Journal of Environmental and Agricultural Sciences (JEAS). Ali et al., 2019. Volume 21: 23-28
Open Access – Research Article
Some Direct and Indirect Selection Indices for Increased Yield of Peas (Pisum sativum L.)
Imtiaz Ali 1,*, Muhammad Tariq Mahmood 2,3, Imran Akhtar 1, Akash Zafar 1, Abdul Majid Khan 1, Muhammad Zubair 4, Wajiha Anum 1
1Regional Agricultural Research Institute, Bahawalpur, Pakistan
2Vegetable Research Station, Bahawalpur, Pakistan
3Gram Research Station, KallurKot, Bhakkar, Pakistan
4Guar Research Station, Bahawalpur, Pakistan
Abstract: The phenotypic expression of field pea (Pisum sativum L.) in terms of grain yield results as outcome of direct and indirect effects of various agronomic traits. An experiment was conducted at Vegetable Research Station, Bahawalpur, Pakistan during 2015-2016 to measure the effects of various yield attributes on the final yield. Ten genotypes of field pea viz; DP-1-14, DP-2-14, DP-3-14, DP-4-14, DP-5-14, DP-6-14, DP-7-14, DP-8-14, No. 267 and Pea-09 were grown in field under randomized complete block design replicated thrice. Data for various traits including plant height, branches per plant, number of clusters per plant, pods per plant, pod length, pod width, seeds per pod, 100-seed weight and grain yield per plant were recorded at maturity. Statistical analysis showed that plant height had the highest values of GCV% (57.77), heritability (0.95), genetic advance and percentage of genetic advance (116), while the highest value of phenotypic coefficient of variation was exhibited by number of cluster per plant. The highest significant and positive genotypic correlation was observed between seeds per pod and pod length (88%). 100-seed weight also showed significant and positive association with seeds per pod. Path analysis revealed that pod length had the highest direct effect on seed yield of peas (7.99) followed by number of cluster per pod (5.82) and branches per plant (5.19). The above mentioned traits may be considered while attempting for improvement in pea seed yield.
Keywords: Pea, variability, correlation, path analysis, yield attributes
*Corresponding author: Imtiaz Ali: imtiaz.malghani@gmail.com
Cite this article as:
Ali, I., M.T. Mahmood, M.I. Akhtar, A. Zafar, A. M. Khan M. Zubair and W. Anum. 2019. Some direct and indirect selection indices for increased yield of peas (Pisum sativum L.). Â Journal of Environmental& Agricultural Sciences. 21:23-28. [Abstract] [View Full-Text] [Citations]Â
Copyright © Ali et al., 2019. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium provided the original author and source are appropriately cited and credited.
Similar Articles Published in JEAS
- Nasir, M.W., and Z. Toth. 2021. Effect of drought stress on morphology, yield, and chlorophyll concentration of Hungarian potato genotypes. Journal of Environmental & Agricultural Sciences. 23(3&4): 8-16. [View Full-Text]Â [Citations]
- Akbarzai, D.K., G.R. Akbari, L. Mohammadi, M.N. Saif and A. Farhang. 2022. AMMI analysis of yield stability and adaptability in barley: A case study of Afghanistan. Journal of Environmental & Agricultural Sciences. 24(1&2): 18-25. [View Full-Text] [Citations]
- Akbarzai, D.K., G.R. Akbari, L. Mohammadi, M.N. Saif and A. Farhang. 2022. AMMI analysis of yield stability and adaptability in barley: A case study of Afghanistan. Journal of Environmental & Agricultural Sciences. 24(1&2): 18-25. [Abstract] [View Full-Text] [Citations]Â
- Özkan, H., M. Aasim. 2020. Comparison of in vitro regeneration potential of different preconditioned and nonconditioned explants of peanut (Arachis hypogaea L). Journal of Environmental & Agricultural Sciences. 22(2): 11-19.
- Sattar, S., M.M. Iqbal, A. Areeb, Z. Ahmed, M. Irfan, R.N. Shabbir, G. Aishia and S. Hussain. 2015. Genotypic variations in wheat for phenology and accumulative heat unit under different sowing times.Journal of Environmental & Agricultural Sciences. 2:8. [View Full-Text] [Citations]Â
- Saeed, B., A. Nawab and S. Rani. 2020. Genotypic variation in micronutrient composition of Potato (Solanum tuberosum). Journal of Environmental and Agricultural Sciences. 22(1):64-70. [Abstract] [View Full-Text] [Citations].
References
Afreen, S., A.K. Singh, D.P. Moharana, V. Singh, P. Singh and B. Singh. 2017. Genetic evaluation for yield and yield attributes in garden pea (Pisum sativum var. hortense L.) under North Indian gangetic plain conditions. Int. J. Curr. Microbiol. App. Sci. 6(2): 1399- 1404.
Ahmad, H.B., S. Rauf, M. Rafiq, A.U. Mohsin and A. Iqbal, 2014. Estimation of genetic variability in pea (Pisum sativum L.). J. Glb. Innov. Agric. Soc. Sci. 2(2): 62-64.
Barbosa, A.M., K.A. Guidorizi, T.A. Catuchi, T.A. Marques, R.V. Ribeiro and G.M. Souza. 2015. Biomass and bioenergy partitioning of sugarcane plants under water deficit. Acta Physiol. Plant. 37(142): 1-8.
Dewey, K.D. and K.H. Lu. 1959. A correlation and path analysis of component of crested wheat grass seed production. Agron. J. 51(9): 515-518.
Georgieva, N., N. Ivelina and K. Valentin. 2016. Evaluation of genetic divergence and heritability in pea (Pisum sativum L.). J. Bio. Sci. Biotech. 5(1): 61-67.
Gowher, A.W., A.M. Bilal and M.A. Shah. 2013. Evaluation of diversity in Pea (Pisum sativum L.) genotypes using agro-morphological characters and RAPD analysis. Int. J. Cur. Res. Rev. 5(10): 17- 25.
Gudadinni, P., V. Bahadur, P. Ligade, S.E. Topno and V.M. Prasad. 2017. Study on genetic variability, heritability and genetic advance in garden pea (Pisum sativum var. hortense L.). Int. J. Current Microbio. App. Sci. 6(8): 2384-2391.
Guleria, S., N. Chongtham and S. Dua. 2009. Genetic variability, correlation and path analysis studies in pea (Pisum sativum L.). Crop Res. 38(1-3): 179-183.
Habtamu, S. and F. Million. 2013. Multivariate analysis of some Ethiopian field pea (Pisum sativum L.) genotypes. Int. J. Genet. Mol. Bio. 5(6): 78-87.
Hanson, C.H., H.F. Robinson and R.E. Comstock. 1956. Biometric studies of yield in segregating population of Korean lespedeza. Agron. J. 48(6): 268-272.
Husnain, S.K., S.H. Khan, M. Atiq, N.A. Rajput, W. Abbas and M. Mohsin. 2019. Screening of peas (Pisum sativum) varieties/ lines against fusarium wilt (Fusarium oxysporum f. sp. Pisi) and in vitro evaluation of fungicides against mycelial growth of pathogen. Pakistan J. Phytopath. 31(1):Â 89-96.
Jaiswal, N.K., A.K. Gupta, H. G. Dewangan and R.G. Lavanya. 2015. Genetic variability analysis in field pea (Pisum sativum L.). Int. J. Sci. Res. 4(1): 2006-2007.
Johnson, H.W., H.F. Robinson and R.E. Comstock. 1955. Estimation of genetic and environmental variability in soybeans. Agron. J. 47(7): 314-318.
Kumar, K. and K.M. Goh. 2002. Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. Eur. J. Agron. 16(4): 295-308.
Kumar, M., M.S. Jeberson, N.B. Singhand R. Sharma. 2017. Genetic analysis of seed yield and its contributing traits and pattern of their inheritance in fieldpea (Pisum sativum L.). Int. J. Current Microb. App. Sci. 6(6): 172-181.
Li, J., L. Huang, J. Zhang, J.A. Coulter, L. Li, Y. Gan. 2019. Diversifying crop rotation improves system robustness. Agron. Sustain. Develop. 39(4): 38
Ludidi N.N., T.K. Pellny, G. Kiddle, C. Dutilleul, K. Groten, P.D.V. Heerden, S. Dutt, S.J. Powers, P. Romer and C.H. Foyer. 2007. Genetic variation in pea (Pisum sativum L.) demonstrates the importance of root but not shoot C/N ratios in the control of plant morphology and reveals a unique relationship between shoot length and nodulation intensity. Plant Cell Environ. 30(10): 1256-1268.
Millar, P.A., J.C. Williams, H.F. Robinson and R.E. Comstock. 1958. Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. Agron. J. 50(3): 126-131.
Nawab, N.N., G.M. Subhani, K. Mahmood, Q. Shakil and A. Saeed. 2008. Genetic variability, correlation and path analysis studies in garden pea (Pisum sativum L.). J. Agric. Res. 46(4): 333-340.
Ouda, S., A.E.H. Zohry and T. Noreldin. 2018. Crop Rotation Maintains Soil Sustainability. In: S. Ouda, A.E.H. Zohry, T. Noreldin (Eds) Crop Rotation: An Approach to Secure Future Food. Springer. p. 55-76.
Rasaei, A., M.E. Ghobadi, M. Ghobadi and K. Abdi-niya. 2011. The study of traits correlation and path analysis of the grain yield of the peas in semi-dry conditions in Kermanshah. IACSIT. 9: 246-249.
Saharan, K. and N. Khetarpaul. 1994. Protein quality traits of vegetable and field peas: varietal differences. Plant Foods  Hum. Nutr. 45(1): 11-22.
Siddika, A., A. Islam, G. Rasul, M.A.K. Mian and J.U. Ahmed. 2013. Genetic variability in advanced generations of vegetable pea (Pisum sativum L.). Int. J. Plant Breed. 7(2): 124-128.
Singh, B.K., M. Sutradhar, A.K. Singh and S.K. Singh. 2017. Evaluation of genetic variability, correlation and path coefficients analysis for yield attributing traits in field pea [Pisum sativum (L.) var. arvense]. Res. Crops. 18(2): 316-321.
Teixeira, E.I., J. de Ruiter, A.G. Ausseil, A. Daigneault, P. Johnstone, A. Holmes, A. Tait and F. Ewert. 2018. Adapting crop rotations to climate change in regional impact modelling assessments. Sci. Total Environ. 616-617: 785-795.
Togay, N., Y. Togay, B. Yildirim and Y. Dogan. 2008. Relationships between yield and some yield components in pea (Pisum sativum arvense L.) genotypes by using correlation and path analysis. Afr. J. Biotech. 7(23): 4285-4287.
Tulbek, M.C., R.S.H. Lam, Y. Wang, P. Asavajaru and A. Lam. 2017. Chapter 9 – Pea: A Sustainable Vegetable Protein Crop. In: Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L. (Eds.), Sustainable Protein Sources. Academic Press, San Diego, pp. 145-164.
Wright, S. 1934. The method of path coefficients. Ann. Math. Stat. 5(3): 161-215.
Yirga, H., H. Mohammad, B. Abate and B. Amare. 2015. Association of traits with yield in Dekoko (Pisum sativum var. abyssinicum) accessions in the highlands of southern Tigray. Ethiop. Afr. J. Agric. Res. 10(12):1480-1487.