Optimization of Phosphorus and Potassium Fertilization Rates for Improving Mungbean Production – Abstract

Phosphorus, potassium, mungbean

Journal of Environmental and Agricultural Sciences (JEAS). Hassan et al., 2023. 25(1&2):27-36.

Open Access – Research Article

Optimization of Phosphorus and Potassium Fertilization Rates for Improving Mungbean Production Under Arid Agroclimatic Conditions of Thal, Punjab, Pakistan

Ishtiaq Hassan 1, Ghulam Abbas 2, Jamshad Hussain *,2, Zafar Abbas 2, Tahir Mehmood 2,
Marghub Amer 2, Muhammad Ashraf Bhatti 3, Sajjad Hussain 4

1 Additional Director General, Agriculture (Farms and Training), Department of Agriculture, Punjab Lahore
2 Adaptive Research Farm Karor Laal Eissen, Punjab, Pakistan
3 Soil and Water Testing Laboratory, Layyah, Punjab, Pakistan
4 School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China


Abstract: Macronutrients including potassium (K), and phosphorus (P) are vital for the growth and development of plants. Compromised availability of these nutrients not only reduces the quantity and quality of crop yield but also threatens agricultural sustainability and food security. Improved utilization efficiency of plant nutrients offers a potential way to reduce the negative impact of nutrient (K and P) deficiencies. Mungbean is a major pulse crop of the Thal region, Punjab, Pakistan. However, its regional average grain yield is lower than its yield potential. This yield gap can be attributed to due to several crop management issues, mainly inadequate and imbalanced crop nutrition. A two-year (2017 and 2018) field experiment was planned to optimize the combination and level of K and P fertilizers for mungbean crop in the Thal region, Punjab, Pakistan. An experiment was conducted at Adaptive Research Farm, Karor Laal Eissen during kharif seasons (2017 and 2018), arranged in triplicate using randomized complete block design (RCBD). Mungbean plants were exposed to five combinations of phosphorus and potassium fertilizers including P0K0 (Control, without P and K); P30K0 (30 kg P2O5, 0 kg ha-1 K2O); P45K50 (45 kg P2O5, 50 kg ha-1 K2O); P57K62 (57 kg P2O5, 62 kg ha-1 K2O) and P85K75 (85 kg P2O5, 75 kg ha-1 K2O). Plant height, pods plant-1, grains pod-1, 1000-grain weight and yield kg ha-1 were minimum where no fertilizers (Control, T1) were used. Studied growth and yield parameters of mungbean showed an increasing trend with the increasing level of both P and K fertilizer applications till P57K62. However, further increase in P and K nutrient levels negatively affected the mungbean growth and yield. Dry matter accumulation crop growth rate of mungbean plants was maximum when treated with P57K62. However, performance of mungbean plants was statistically inferior in terms of plant height (cm), number of pods plant-1, number of seeds pod-1, 1000-grain weight (g) and grain yield during both years, when treated with other fertilizer application treatments i.e., P30K0, P45K50, P85K75. From the presented results it can be concluded that under Thal region of Pakistan, higher mungbean yield can be increased by the application of P57K62 (57 kg ha-1 of P2O5 and 62 kg ha-1 of K2O).

Keywords: Phenology, Pulses, macronutrients, crop yield, Crop development, time to flowering, Arid climatic conditions, Potassium, Phosphorus.
*Corresponding author: Jamshad Hussain mjamshad18@gmail.com


Cite this article as:

Hassan, I., G. Abbas, J. Hussain, Z. Abbas, T. Mehmoos, M. Amer, M.A. Bhatti, S. Hussain. 2023. Optimization of phosphorus and potassium fertilization rates for improving mungbean production under arid agroclimatic conditions of Thal, Punjab, Pakistan. Journal of Environmental & Agricultural Sciences. 25 (1&2): 27-36. [Abstract] [View Full-Text] [Citations]


Copyright © Hassan et al., 2023  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium provided the original author and source are appropriately cited and credited.

Phosphorus, potassium, optimization, mungbean production, Thal, Punjab, Pakistan


Similar Articles Published in JEAS

  1. Dev, P., U. Singh, L.N. Singh, Y.S. Shivay, M. Kumar and P.R. Raiger. 2023. Zinc biofortification of mungbean (Vigna radiata L.) as influenced by varieties and zinc fertilization. Journal of Environmental & Agricultural Sciences. 25 (1&2): 1-17 [Abstract] [View Full-Text] [Citations]
  2. Abbas, Z., G. Abbas, J. Hussain, T. Mehmood, M. Amer, S. Hussain and M.N. Ahmad. 2021. Foliar application of macro and micronutrients enhances cotton production. Journal of Environmental & Agricultural Sciences. 23(3 & 4): 1-7. [Abstract]
  3. Haider, M.W., K. Ziaf, R. Anwar, A.U. Malik, M.M. Jahangir, R. Riaz, M. Asif, B.E. Bajwa, M.A. Ghani, Y. Majeed and C.M. Ayyub. 2022. Impact of Seed Sources, Genotypes and Fertilizer Sources on Onion Set Production Potential. Journal of Environmental & Agricultural Sciences. 24(1&2): 1-9. [Abstract] [View Full-Text]
  4. Naroua, I., S. Issaka, A.K. Saidou, R.A. Issoufou, S.M. Sadi and J.B. Aune. 2020. Effects of fertilizer micro-dosing on grain yield of cereals and legumes in Western Niger, West Africa. Journal of Environmental and Agricultural Sciences.22(2):20-25. [Abstract] [View Full-Text]
  5. Hussain, I., G. Abbas, J. Hussain, Z. Abbas, T. Mehmood, M. Amer, Q. Maqsood and I. Rasool. 2022. Application of sulphate of potash enhances mungbean (Vigna radiata) yield under agroclimatic conditions of Thal, Pakistan. Journal of Environmental& Agricultural Sciences. 24(3&4):23-28.
    [Abstract] [View Full-Text]
    .
  6. Sattar, B., S. Ahmad, I. Daur, M.B. Hussain, M. Ali, T.U. Haq, M. Arif and M. Bakhtawer. 2021. Bioactive-sulfur coated diammonium phosphate improves nitrogen and phosphorus use efficiency and maize (Zea mays L.) yield. Journal of Environmental & Agricultural Sciences. 23(3&4): 23-29. [View Full-Text]
  7. Abbas, Z., G. Abbas, J. Hussain, T. Mehmood, M. Amer, S. Hussain and M.N. Ahmad. 2021. Foliar application of macro and micronutrients enhances cotton production. Journal of Environmental & Agricultural Sciences. 23(3 & 4): 1-7.  [View Full-Text]
  8. Naroua, I., S. Issaka, A.K. Saidou, R.A. Issoufou, S.M. Sadi and J.B. Aune. 2020. Effects of fertilizer micro-dosing on grain yield of cereals and legumes in Western Niger, West Africa. Journal of Environmental and Agricultural Sciences.22(2):20-25. [View Full-Text]

References
Ahmad, A., M. Ashfaq, G. Rasul, S. A. Wajid, T. Khaliq, F. Rasul, U. Saeed, M. H. u. Rahman, J. Hussain, I. A. Baig et al., 2015. Impact of Climate Change on the Rice–Wheat Cropping System of Pakistan. In: Handbook of Climate Change and Agroecosystems. p. 219-258.

Ahmad, S., S. Zafar, F. Jabeen, N. Akhter, M. Akram, E. Mohiuddin, S. M. A. Shah, S. Siddiqui, M. A. Chishti and G. Sarwar. 2022. Antipyretic activity of medicinal plants from the Thal Desert. Lett. Appl. NanoBioScience. 12: 62.

Amin, A., W. Nasim, M. Mubeen, M. Nadeem, L. Ali, H. M. Hammad, S. R. Sultana, K. Jabran, M. H. u. Rehman, S. Ahmad, et al., 2017. Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ. Sci. Pollut. Res. 24: 5811-5823.

Askari-Khorasgani, O., M. I. A. Rehmani, S. H. Wani and A. Kumar. 2021. Osmotic stress: an outcome of drought and salinity. In: Handbook of Plant and Crop Physiology. CRC Press. p. 445-464.

Aulakh, A. M., G. Qadir, F. U. Hassan, R. Hayat, T. Sultan, M. Billah, M. Hussain and N. Khan. 2020. Desert soil microbes as a mineral nutrient acquisition tool for chickpea (Cicer arietinum L.) productivity at different moisture regimes. Plants. 9: 1629.

Awais, M., A. Wajid, A. Ahmad, F. Saleem, U. Bashir, U. Saeed, J. Hussain, and H. Rehman. 2015. Nitrogen fertilization and narrow plant spacing stimulates sunflower productivity. Turk. J. Field Crops. 20(1):99-108.

Bi, J., Z. Liu, Z. Lin, M. A. Alim, M. I. A. Rehmani, G. Li, Q. Wang, S. Wang and Y. Ding. 2013. Phosphorus accumulation in grains of japonica rice as affected by nitrogen fertilizer. Plant Soil. 369: 231-240.

Dev, P., U. Singh, L.N. Singh, Y.S. Shivay, M. Kumar and P.R. Raiger. 2023. Zinc biofortification of mungbean (Vigna radiata L.) as influenced by varieties and zinc fertilization. J. Environ. Agric. Sci. 25 (1&2): 1-17.

Favero, V. O., R. H. de Carvalho, A. B. C. Leite, D. M. T. dos Santos, K. M. de Freitas, R. M. Boddey, G. R. Xavier, N. G. Rumjanek and S. Urquiaga. 2022. Bradyrhizobium strains from Brazilian tropical soils promote increases in nodulation, growth and nitrogen fixation in mung bean. Appl. Soil Ecol. 175: 104461.

Garzanti, E., W. Liang, S. Andò, P. D. Clift, A. Resentini, P. Vermeesch and G. Vezzoli. 2020. Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland-basin deposition driven by latest Quaternary climate change. Earth-Sci. Rev. 207: 103220.

Geetika, G., M. Collins, V. Singh, G. Hammer, V. Mellor, M. Smith and R. C. N. Rachaputi. 2022. Canopy and reproductive development in mungbean (Vigna radiata). Crop Pasture Sci. 73: 1142-1155.

Hossain M.E. and M.S. Islam. 2018. Effect of manures with fertilizers on yield and yield traits of mungbean (Vigna radiata L.). Bangladesh Agron. J. 20(2): 115-122.

Hou, D., L. Yousaf, Y. Xue, J. Hu, J. Wu, X. Hu, N. Feng and Q. Shen. 2019. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients. 11: 1238.

Hunt, R. 1978. Plant growth analysis. Edward Arnold, U.K., pp: 26-38.

Hussain, I., G. Abbas, J. Hussain, Z. Abbas, T. Mehmood, M. Amer, Q. Maqsood and I. Rasool. 2022. Application of sulphate of potash enhances mungbean (Vigna radiata) yield under agroclimatic conditions of Thal, Pakistan. J. Environ. Agric. Sci. 24(3&4):23-28.

Hussain, J., T. Khaliq, A. Ahmad, J. Akhter and S. Asseng. 2018. Wheat responses to climate change and its adaptations: a focus on arid and semi-arid environment. Int. J. Environ. Res. 12: 117–126.

Hussain, J., T. Khaliq, M. H. u. Rahman, A. Ullah, I. Ahmed, A. K. Srivastava, T. Gaiser and A. Ahmad. 2021. Effect of temperature on sowing dates of wheat under arid and semi-arid climatic regions and impact quantification of climate change through mechanistic modeling with evidence from field. Atmosphere. 12: 927.

Hussain, J., T. Khaliq, S. Asseng, U. Saeed, A. Ahmad, B. Ahmad, I. Ahmad, M. Fahad, M. Awais, A. Ullah and G. Hoogenboom. 2020. Climate change impacts and adaptations for wheat employing multiple climate and crop models in Pakistan. Clim. Change 163: 253-266.

Imran, A.A. Khan, I. Inam and F. Ahmad. 2016. Yield and yield attributes of Mungbean (Vigna radiata L.) cultivars as affected by phosphorous levels under different tillage systems. Cogent Food Agric. 2: 1151982.

Iqbal, J., G. Shabbir, K. N. Shah, H. Fayyaz ul and A. Qayyum. 2021. Deciphering of genotype × environment interaction to identify stable heat-tolerant mung bean genotypes by GGE Biplot Analysis. J. Soil Sci. Plant Nutrit. 21: 2551-2561.

Janati, W., B. Benmrid, W. Elhaissoufi, Y. Zeroual, J. Nasielski and A. Bargaz. 2021. Will Phosphate Bio-Solubilization Stimulate Biological Nitrogen Fixation in Grain Legumes? Front. Agron. 3:637196.

Johnson, R., K. Vishwakarma, M. S. Hossen, V. Kumar, A. M. Shackira, J. T. Puthur, G. Abdi, M. Sarraf and M. Hasanuzzaman. 2022. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 172: 56-69.

Kabré, J. d. A. W., D. Dah-Nouvlessounon, F. Hama-Ba, A. Agonkoun, F. Guinin, H. Sina, A. N. Kohonou, P. Tchogou, M. Senou, A. Savadogo and L. Baba-Moussa, 2022: Mung bean (Vigna radiata (L.) R. Wilczek) from Burkina Faso used as antidiabetic, antioxidant and antimicrobial agent. Plants. 11: 3556.

Khan, K., M. Ali, M. Naveed, M. Rehmani, M. Shafique, H. Ali, N. Abdelsalam, R. Ghareeb and G. Feng. 2022. Co-application of organic amendments and inorganic P increase maize growth and soil carbon, phosphorus availability in calcareous soil. Front. Environ. Sci. 10:949371.

Liang, W., E. Garzanti, S. Andò, P. Gentile and A. Resentini. 2019. Multimineral fingerprinting of Transhimalayan and Himalayan sources of Indus-Derived Thal Desert sand (Central Pakistan). Minerals. 9: 457.

Liu, C., Q. Zhang, J. Dong, C. Cai, H. Zhu and S. Li, 2022: Genome-wide identification and characterization of mungbean CIRCADIAN CLOCK ASSOCIATED 1 like genes reveals an important role of VrCCA1L26 in flowering time regulation. BMC Genomics. 23: 374.

Lu, Y., A. Jenkins, R. C. Ferrier, M. Bailey, I. J. Gordon, S. Song, J. Huang, S. Jia, F. Zhang, X. Liu, Z. Feng and Z. Zhang, 2015. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability. Sci. Adv. 1: e1400039.

Malhotra, H., Vandana, S. Sharma and R. Pandey. 2018. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In: M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar and B. Hawrylak-Nowak (Editors). Plant Nutrients and Abiotic Stress Tolerance. Springer Singapore, Singapore. p. 171-190.

Manzoor, R., M. S. Akhtar, K. S. Khan, T. Raza, M. I. A. Rehmani, C. Rosen, M. K. U. Rehman, N. Zidan, F. M. Alzuaibr and N. M. Abdulsalam. 2022. Diagnosis and Recommendation Integrated System Assessment of the nutrients limiting and nutritional status of tomato. Phyton-Int. J. Exp. Bot. 91: 2759-2774.

Mariotti, M., A. Masoni, L. Ercoli and I. Arduini. 2009. Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass Forage Sci. 64: 401-412.

Mitran, T., R. S. Meena, R. Lal, J. Layek, S. Kumar and R. Datta, 2018: Role of Soil Phosphorus on Legume Production. In: R. S. Meena, A. Das, G. S. Yadav and R. Lal (Editors). Legumes for Soil Health and Sustainable Management. Springer Singapore, Singapore. p. 487-510.

Mota, F. M., D. S. Balla and M. B. Doda. 2021. Response of mung bean varieties (Vigna radiata L.) to application rates and methods of blended NPS Fertilizer at Humbo. Int. J. Agron. 2021: 3786720.

Nawaz, Z., X. Li, Y. Chen, Y. Guo, X. Wang and N. Nawaz. 2019. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water. 11: 1916.

Naz, T., M. Mazhar Iqbal, M. Tahir, M. M. Hassan, M. I. A. Rehmani, M. I. Zafar, U. Ghafoor, M. A. Qazi, A. EL Sabagh and M. I. Sakran. 2021. Foliar application of potassium mitigates salinity stress conditions in spinach (Spinacia oleracea L.) through reducing NaCl toxicity and enhancing the activity of antioxidant enzymes. Horticulturae. 7: 566.

Noor, R., A. Maqsood, A. Baig, C. B. Pande, S. M. Zahra, A. Saad, M. Anwar and S. K. Singh. 2023. A comprehensive review on water pollution, South Asia Region: Pakistan. Urban Climate. 48: 101413.

Pahalvi, H. N., L. Rafiya, S. Rashid, B. Nisar and A. N. Kamili. 2021. Chemical Fertilizers and Their Impact on Soil Health. In: G. H. Dar, R. A. Bhat, M. A. Mehmood and K. R. Hakeem (Editors). Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs. Springer International Publishing, Cham. p. 1-20.

Pasley, H., K. Wenham, L. Bell, N. Huth, D. Holzworth, A. Chaki, D. Gaydon and M. Collins. 2023. APSIM next generation mungbean model: A tool for advancing mungbean production. Field Crops Res. 298: 108955.

Perelman, A., P. Imas and S. K. Bansal. 2022. Potassium Role in Plants’ Response to Abiotic Stresses. In: N. Iqbal and S. Umar (Editors). Role of Potassium in Abiotic Stress. Springer Nature Singapore, Singapore. p. 15-39.

Pretty, J. 2018. Intensification for redesigned and sustainable agricultural systems. Science. 362: eaav0294.

Rawat, J., N. Pandey and J. Saxena. 2022. Role of Potassium in Plant Photosynthesis, Transport, Growth and Yield. In: N. Iqbal and S. Umar (Editors). Role of Potassium in Abiotic Stress. Springer Nature Singapore, Singapore. p. 1-14.

Rehman, M., A. Bakhsh, M. Zubair, M. I. A. Rehmani, A. Shahzad, S. Nayab, M. Khan, W. Anum, R. Akhtar, N. Kanwal, N. Manzoor and I. Ali. 2021. Effects of Water Stress on Cotton (Gossypium spp.) Plants and Productivity. Egyptian J. Agron. 43: 307-315.

Rehmani, M. I. A., C. Ding, G. Li, S. T. Ata-Ul-Karim, A. Hadifa, M. A. Bashir, M. Hashem, S. Alamri, F. Al-Zubair and Y. Ding. 2021. Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River Valley, China. J. King Saud Uni. Sci. 33: 101599.

Schreinemachers, P., T. Sequeros, S. Rani, M. A. Rashid, N. V. Gowdru, M. S. Rahman, M. R. Ahmed and R. M. Nair. 2019. Counting the beans: quantifying the adoption of improved mungbean varieties in South Asia and Myanmar. Food Secur. 11: 623-634.

Shahrajabian, M. H., W. Sun and Q. Cheng. 2022. Chapter 20 – A survey of biological nitrogen fixation in adzuki beans, soybeans, and mung beans, three legumes in traditional Chinese medicine. In: R. B. Singh, S. Watanabe and A. A. Isaza (Editors). Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases. Academic Press. p. 301-316.

Singh, G., P. Singh and G. Sodhi. 2019. Analysis of yield gaps in pulse production in south western Punjab. J. Commun. Mobilization Sustain. Develop. 14: 572-578.

Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. McGraw Hill, New York, NY.

Ullah, A., T. M. Shah and M. Farooq. 2020. Pulses production in Pakistan: Status, constraints and opportunities. Int. J. Plant Prod. 14: 549-569.

Wajid, A., M.H. Rahman, A. Ahmad, T. Khaliq, N. Mahmood, F. Rasul, M.U. Bashir, M. Awais, J. Hussain and G. Hoogeboom. 2013. Simulating the interactive impact of nitrogen and promising cultivars on yield of lentil (Lens culinaris) using CROPGRO-legume model. Int. J. Agric. Biol. 15: 1331‒1336.

Wang, Y., Y.-F. Chen and W.-H. Wu. 2021. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 63: 34-52.

Wu, W. and B. Ma, 2015. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 512-513: 415-427.

Yasin, G., M. F. Nawaz, F. Rasool, M. T. B. Yousuf, M. Q. Nazir and A. Javed. 2016. Effect of Canopy Cover of Capparis decidua Forsk. on Soil Conditions in Thal Desert. J. Bioresour. Manag. 3: 3.

Yasir, T. A., A. Khan, M. Skalicky, A. Wasaya, M. I. A. Rehmani, N. Sarwar, K. Mubeen, M. Aziz, M. M. Hassan, F. A. S. Hassan, M. A. Iqbal, M. Brestic, M. S. Islam, S. Danish and A. EL Sabagh. 2021. Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and biochemical properties. Molecules. 26: 2576.

Yin, Z., W. Guo, H. Xiao, J. Liang, X. Hao, N. Dong, T. Leng, Y. Wang, Q. Wang and F. Yin. 2018. Nitrogen, phosphorus, and potassium fertilization to achieve expected yield and improve yield components of mung bean. PLOS ONE 13(10): e0206285. 

Zafar, S. H., M. Umair and M. Akhtar. 2023. Nutritional evaluation, proximate and chemical composition of mungbean varieties/cultivars pertaining to food quality characterization. Food Chem. Adv. 2: 100160.

Zhu, J., M. Li and M. Whelan. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 612: 522-537.

.

One Reply to “Optimization of Phosphorus and Potassium Fertilization Rates for Improving Mungbean Production – Abstract”

  1. Well I sincerely liked studying it. This information provided by you is very helpful for proper planning.

Leave a Reply

Your email address will not be published. Required fields are marked *