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Abstract: Shortage of water is one of the major threats crop production is facing today. 

Implications of Water stress can influence all plant processes on agriculture are predicted 

to increase under changing climatic conditions. This article describes impacts of water 

stress on crop production, and why water stress mitigation and management are vital for 

sustainable agricultural production under water scarce conditions. Plants respond to water 

stress through physiological and biochemical mechanisms depending on intensity, 

duration and frequency of stress conditions. Reduced water potential and stomatal closure 

lead to disturbed water flow and ultimately limiting photosynthetic capacity and growth 

and development of crop plants. It then reviews the effects of water stress on crop growth, 

yield, and quality are discussed. The article also discusses the potential implications of 

water stress for sustainable agriculture, including the need for improved water 

management, the development of drought-tolerant crop varieties, and the use of water-

saving irrigation technologies. Stomatal regulation, osmotic and hormonal adjustment, 

morphological adaptations are key players. Future research efforts need to focus on the 

use of modern techniques to develop effective strategies to mitigate the impacts of water 

stress to ensure sustainable crop production and food security under rapidly changing 

climatic conditions.. 

Keywords: Agriculture; Drought; Plant growth; Seed germination; Plant hormones 

*Corresponding author: Muhammad Zaib mjamshad18@gmail.com   

Cite this article as: Zaib, M., U. Farooq, M. Adnan, Z. Abbas, K. Haider, N. Khan, R. Abbas, A.S. Nasir, Sidra, 

M.F. Muhay-Ul-Din, T. Farooq, A. Muhammad. 2023. Optimization water stress in crop plants, implications 

for sustainable agriculture: current and future prospects. Journal of Environmental & Agricultural Sciences. 

25 (1&2): 37-50. 

Copyright © Zaib et al., 2023 

 

This is an open-access article distributed under the terms of the Creative Commons Attribution 

License, which permits unrestricted use, distribution, and reproduction in any medium 

provided the original author and source are appropriately cited and credited. 

1. Introduction 

Climatic change is multifaceted and often 

characterized by anomalies in the intensity, duration, 

and frequency of extreme weather events, changes in 

trends of precipitation, temperature, and other climatic 

parameters (Ncama et al., 2022). These anomalies will 

lead to conditions in which the performance of plants 

is compromised and cause a significant negative 

impact on crop yield (Francini and Sebastiani, 2019). 

Soil provides a wide range of important ecosystem 

services, to meet the necessities of all living organisms 

(Fossey et al., 2022; Jónsson and Davíðsdóttir, 2016; 

Pereira, et al., 2018). It is responsible for providing 

facilities, meals, firewood, basic support, and balance 

resources, used to reduce the effect of runoff on the 

mailto:mjamshad18@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Water Stress in Crop plants, Implications for Sustainable Agriculture 
Open 

Access 

Review  

Article 
  

 
Zaib et al., 2023  (38) J. Environ. Agric. Sci. 25 (1&2):37-50. 

topsoil to control flooding, purification of nutrients 

and impurities, used carbon sequestration (Adhikari 

and Hartemink, 2016; Dominati et al., 2014; Hyun et 

al., 2022). Soil serves as a natural medium for plant 

growth and provides water, food and support for plants 

(Lal, 2016). Healthy soil must provide additional 

environmental amenities, for example, a diverse range 

of nutrients, a better bacteriological community, and a 

range (Baveye et al., 2016). Various ecological 

features including climatic conditions, topography, 

soil properties (soil texture and structure, organic 

matter contents), water quality, and availability have a 

direct impact on the productivity of the agricultural 

system. A healthy soil will be more resilient to 

changing climatic conditions (Lehmann et al., 2020; 

Mirzabaev et al., 2019; Olsson et al., 2019). Soil 

lacking features suitable for performing these 

ecological services leading to a reduction in soil 

capacity to produce optimum yield is generally termed 

degraded soils (Eswaran et al., 2001). 

Plants are grown for food purposes in the open 

environment and experience multiple abiotic stresses 

during their life cycle. These stresses adversely affect 

plant performance, development, yield and quality of 

produce. Plants undergo a series of morphological, 

functional, natural and molecular variations in their 

quest to overcome abiotic stresses (Munns and Millar, 

2023; Zhang et al., 2022). Much effort has been done 

to investigate the adaptation of food crops to various 

abiotic stresses, like temperature, drought, and salinity 

etc, (Wang et al., 2016; Anjum et al., 2017). However, 

judging plant responses to a combination of stresses to 

enhance plant adaptation to field conditions is limited 

(Pandey et al., 2015). In many regions of the world, 

most crops are susceptible to temperature anomalies 

(Wang et al., 2016), smaller increase in temperature 

can result in drought vulnerability of crops (Beck et al., 

2007; Li et al., 2021). 

Moreover, drought combined with other stresses, 

e.g., simultaneous drought and cold stress affect plant 

processes, hormonal imbalance, altered enzymatic 

activity, and ultimately reduces plant productivity, 

(Agurla et al., 2018; Chen et al., 2021; Guo et al., 

2021). Generally, low temperature and drought stress 

cause several similar impacts on plants e.g., stomata 

regulation, foliage growth and hormonal imbalance. 

However, changes in physical properties caused by 

low temperature and drought are quite different (Deng 

et al., 2012; Guo et al., 2021; Zandalinas and Mittler, 

2022). The combined effects of cold and drought on 
plants are not yet well understood, and it is not known 

whether plant reactions to them are exclusive or 

mutual. Plants may exhibit common molecular and 

physiological responses on exhibit cold and drought, 

some may be definite to a stated stress element 

(Sewelam et al., 2014). 

Drought is a phenomenon that occurs due to 

environmental changes, and it can reduce crop 

productivity by influencing their physiological process 

(Breda et al., 2006; Dikshit et al., 2022; Raposo et al., 

2023). Dehydration occurs when the soil is exposed to 

a water-deficit condition and this condition is called 

drought stress. Drought not only occurs with a 

minimum amount of water in the soil but it can also 

cause by the presence of high salt concentrations in the 

root zone area which reduces the amount of water and 

nutrient availability to plants. In simple words, a factor 

in which plants face water shortage is called drought 

(Osakabe et al., 2014). Lack of H2O in plant life can 

be caused by the unavailability of H2O content in the 

leaves and a decrease in turgor pressure, closure of 

stomata, and reduced cell growth and expansion 

(Farooq et al., 2009a). This stress can cause a reduction 

in plants growth by affecting physical and biotic 

features (Li et al., 2011). 

Furthermore, plants are not the only ones that suffer 

from water deficits during drought, but even when 

reduced climatic conditions can cause turgor 

impairment at the cellular level (Janska et al., 2009; 

Yadav, 2010). Plants often experience drought and 

heat stress that decrease the production of crops all 

around the world. The united impact of mutually high 

temperature and drought on the production of many 

crops is sturdier than single stress effects (Dreesen et 

al., 2012; Rollins et al., 2013). Similarly, lack of water 

for crop production can cause plants to wilt which 

results in reduced crop yields (Vadez et al., 2011a; 

Vadez et al., 2012). Moreover, such factors are mostly 

due to low rainfall and lack of water in the soil. 

Precipitation extremes and prolonged absence of rain 

may enhance the possibility of drought (Trenberth, 

2011; Vadez et al., 2011b). 

2. Effects of Drought on Crop Plants 
2.1. Effect on water content  

Drought stress significantly affects plant 

performance due to reduced availability and uptake of 

water and nutrients, leading to lower crop yields with 

compromised quality (Table 1) (Elias et al., 2019; 

Shiade et al., 2023). Effect of drought on crops can 

vary depending on crop growth stages (Table 2).  
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Table 1. Drought-induced yield Reduction in different crops 

Crop Species Yield Loss (%) References 
Grain crops 
Maize (Zea mays L.) 63–87 (Kamara et al., 2003) 
Wheat (Triticum aestivum L.) 57 (Balla et al., 2011) 
Rice (Oryza Sativa L.) 53–92 (Lafitte et al., 2007) 
Leguminous crops 
Chickpea (Cicer Arietinum L.) 45–69 (Nayyar et al., 2006) 
Soybean (Glycine Max L.) 46–71 (Samarah et al., 2006) 
Oilseed crop 
Sunflower (Helianthus Annuus L.) 60 (MazaheryLaghab et al., 2003) 

Dehydration is a serious problem in plants and has 

a significant influence on the consumption of plant 

essential nutrients by roots and their translocation 

through root water to shoots. Minimum uptake of 

nutrients such as iron, calcium, magnesium, sodium, 

etc. leads to intervention in intake of nutrients and their 

exclusion procedures, and also decreased rate of plant 

transpiration process (Garg, 2003; McWilliams, 2003). 

Another consequence is that plant species and their 

genotypes might differ in reciprocating mineral 

consumption below drought conditions. 

Generally, sodium content can rise by the influence of 

humidity disturbance, phosphorous content is reduced 

by the influence of humidity and there is no ultimate 

influence on potassium (Garg, 2003). Basically, the 

necessities for water and plant nutrients are almost 

inextricably linked, fertilizer application may increase 

crop productivity in using accessible water. This 

shows an important correlation between the deficiency 

of soil humidity and nutrient accessibility. Productivity 

can be significantly enhanced by the rising 

effectiveness of plant nutrients under unfavorable 

humidity conditions (Garg, 2003). It has been observed 

that the sodium and potassium content of Gossypium 

species was affected by drought (McWilliams, 

2003). Potassium is an essential macronutrient, vital 

for several physiological processes in plants including 

drought tolerance. Potassium is critical for the 

improvement of water use efficiency, root growth, 

osmotic adjustment, and increased antioxidant activity 

(da Silva et al., 2021; Turcios et al., 2021; Zahoor et 

al., 2017). 

2.2. Effect of Drought on Photosynthesis  

One of the major impacts of low water content on 

plants is photosynthesis inhibition, resulting in reduced 

enlargement of leaves, malfunction of the 

photosynthetic implements, early degradation and 

related decrease in construction food (Wahid and 

Rasul, 2005). When stomatal and non-stomatal limits 

for photosynthesis are compared, the former may be 

considerably smaller. This suggests that all factors 

except carbon dioxide discharges are affected. One of 

the main problems caused by the effects of drought is 

the termination of leaf stomata, which limits the 

exclusion of carbon dioxide from the leaves. In this 

situation, the insufficient accessibility of CO2 can 

possibly enhance sensitivity to plant photodamage 

(Cornic and Massacci, 1996).   

Table 2. Crop yield reduction due to drought at different crop growth stages 

Crops Development Stage Yield 

Reduction (%) 

References 

Cicer arietinum (Chickpea) Reproduction  60-11 (Ogbonnaya et al., 2003) 
Oryza sativa (Rice) Reproductive (Light stress)  53-92 (Lafitte et al., 2007) 
Hordeum vulgare (Barley) Seed filling  49-57 (Samarah 2005) 
Oryza sativa (Rice) Grain filling (Intense stress)  60 (Basnayake et al., 2006) 
Zea mays (Maize) Grain filling  79-81 (Monneveux et al., 2005) 
Glycine max (Soybean) Reproductive  46-71 (Samarah et al., 2006) 
Brassica napus (Canola) Reproductive  30 (Sinaki et al., 2007) 
Phaseolus vulgaris (Beans) Reproductive  58-87 (Martínez et al., 2007) 
Vigna unguiculata (Cowpea) Reproductive  60-11 (Ogbonnaya et al., 2003) 
Helianthus (Sunflower) Reproductive  60 (Mazahery-Laghab et al., 2003) 
Zea mays (Maize) Reproductive  32-92 (Atteya et al., 2003) 
Oryza sativa (Rice) Reproductive  24-84 (Venuprasad et al., 2007) 
Cajanus cajan (Pigeonpea) Reproductive  40-55 (Nam et al., 2001) 
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Fig 1. Schematic representation of effect of drought stress on photosynthesis (Farooq et al., 2009a) 

Fig. 1 Photosynthesis decreased under low water 

potential or drought stress. Actionable processes that 

cause photosynthesis to decrease under stress. Drought 

stress inhibits the stabilization of reactive oxygen 

species and the formation of antioxidant defenses, 

leading to the addition of reactive oxygen species, 

reactive oxygen species (ROS) can cause oxidative 

stress that results in damage and dysfunction of cell 

components. When the water content in plant roots is 

low, it initiates the process of stomatal closure; this in 

turn reduces the amount of carbon dioxide that plants 

need to complete their life cycle. Carbon dioxide 

reduction not only directly decreases the carboxylate 

process (A process by which one 5-carbon molecule is 

converted into RUBP, into two three-carbon molecules, 

two 3-PGAs), but also leads more electrons to shape 

reactive oxygen species (ROS). Intense drought 

inhibits photosynthesis because of the reduced activity 

of several enzymes. When the water content of plant 
leaf tissue is very low, the activity of plant Rubisco 

binding inhibitors increases. Additionally, noncyclic 

electron transportation is down-regulated to meet the 

reduced demands for NADPH production and thus 

ATP synthesis is reduced. ROS: reactive oxygen 

species. 

The influence of drought conditions in plants can 

induce some specific changes in the plants chlorophyll 

a, chlorophyll b, xanthophylls, and carotenoid 

pigments and mechanisms (Anjum et al., 2003), and 

harm to the photosynthetic capacity of leaves (Fu and 

Huang, 2001), also, when plants are stressed, 

morphological processes such as the Calvin cycle or 

C3 cycle are disrupted, which allow plants to make 

their foods by using light reaction products of 

photosynthesis such as nicotinamide adenine 

dinucleotide phosphate hydrogen (NADPH) and 

adenosine triphosphate (ATP) to produce organic 

products (Monakhova and Chernyadev, 2002). One 

more significant factor that results in reduced crop 

productivity and the capabilities of under-stress plants 

to produce their foods by using sunlight, water, and 
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carbon dioxide is due to the failure of stability in the 

production of reactive oxygen species (ROS) and 

antioxidant defenses (Fu and Huang, 2001; Reddy et 

al., 2004), which result in the addition of reactive 

oxygen species which produce oxidative anxiety in 

lipids membrane, further cellular mechanisms and 

proteins (Fig. 1).  

3. Plant Hormones in Regulating Drought 

Stress Response  
Plants regulate growth, development, and other 

processes, through diverse signaling compounds i.e., 

phytohormones (Ngou et al.,2 022; Zheng et al., 

2023).  Moreover, phytohormones are also key in 

regulating responses under abiotic stresses including 

drought (Askari-Khorasgani et al., 2021; Hussain et al., 

2014; Waadt et al., 2022). Hormonal crosstalk in plants 

during abiotic stress signaling is the key to 

understanding responses and mechanisms involved 

and plant survival (Table 3) (Jan et al., 2019; Kim et 

al., 2022; Salvi et al., 2021). 

3.1. Auxin  

Auxin is vital in chemical messengers that 

coordinate cellular activities and is involved in several 

growth processes and stress responses in plants (Shi et 

al., 2014; Verma et al., 2022). Auxins are involved in 

plant physiological processes like cell expansion, 

division, division and differentiation. Auxins also 

trigger the initiation of plant roots, apical domination, 

arrangement of leaves on plants and their relationship 

with one another and stimuli responses of plants. 

Various auxin genes such as Aux/IAA, GH3 and 

SAUR play important roles in various plant processes. 

They are essential in plant height or plant maturity, are 

essential in plant appearance and can also increase 

plant productivity. Furthermore, these genes are 

considered a vital part of plants which are essential for 

cell enlargement and progression evolution (Asgher et 

al., 2015). Auxin is considered to play an important 

function in arbitrating and ameliorating resistance to 

noninfectious stresses (extreme temperature and 

humidity and nutrient abnormalities), like scarcity 

conditions, which are mentioned in various experiment 

reviews (Kazan, 2013). The most common plant 

hormone, indole-3-acetic acid, a hormone belonging to 

the auxin class, was the first to be identified (Hamayun 

et al., 2021). The Indole 3-acetic acid (IAA) plant 

hormone is derived from tryptophan and has 

tryptophan-like properties. Due to variations in gene 

expression, the growth and progress of auxin-mediated 

is also controlled. Several experiments have shown 

that various changes in the metabolism, synthesis, 

activity of modules, and transport occur when plants 

are facing drought and further stresses (Ljung, 2013). 

Reduction in Indole 3-acetic acid levels induced 

under stresses promotes the levels of abscisic acid in 

plants to stimulate productivity changes with the help 

of auxins. This was reported by Jung et al., (2015) that 

some auxin-coding genes were stimulated or energetic 

in rice cultivars under drought conditions to enhance 

crop tolerance. Presence of YUC6 in Solanum 

tuberosum (potato) cultivars and populus (poplar) 

plants increases growth or productivity by increasing 

auxin, which in turn increases drought tolerance and 

phenotypes (Ke et al., 2015). The presence of auxin 

hormone can improve root branching and significantly 

encourage tobacco seeds to withstand the effects of 

drought (Wang et al., 2018). 

Table 3. Function of different plants phytohormones below the influence of drought 

Hormones Functions in Plants References 

Cytokinins Formation of female gametes and embryos  (Wu et al., 2016) 

Cytokinins Growth of plant parts and the flowering stage  (Liang et al., 2016) 

Cytokinins Photomorphogenesis and leaf senescence  (Ha et al., 2012) 

Auxin Root branching  (Kim et al., 2013) 

Auxin Involved in cell division, cell elongation, apical dominance, 

phyllotaxis and tropic responses  

(Kim et al., 2013) 

Salicylic acid Progressive responses against elevated temperature stress  (Munne-Bosch and Penuelas, 

2003) 

Salicylic acid Stomatal closure  (Dempsey et al., 2011) 

Salicylic acid Defense responses  (Miura et al., 2013) 

Abscisic acid Photosynthetic activity, stomatal regulation, root growth, and 

germination  

(Seo and Koshiba, 2011) 

Abscisic acid Stomatal closure, gene upregulation and compatible osmolyte 

synthesis  

(Shi et al., 2018) 
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Similarly, tomato cultivars can increase their 

tolerance to drought stress because auxin response 

factors (ARFs) attachments directly to the proponent 

of auxin-responsive genes making them imitation 

tolerant to stimulation or suppression (Bouzroud et al., 

2018). Also, auxin response factors (ARFs) are 

responsible for regulating various genes such as 

WRKY108715, MYB14, DREB4, and bZIP 107 to 

enhance tolerance and alleviate drought stress in 

Trifolium (Zhang et al., 2020). Similarly, plant 

phytohormones are also responsible for resistance to 

drought stress by binding with auxin. E.g. auxin can 

also manage several members of the ACS (1-

aminocycloprop ne-1-carboxylate synthase) gene 

family, which is the rate-limiting factor enzyme in 

ethylene biosynthesis. This collaboration in plants is 

responsible for increasing resistance of tolerance in 

plants against drought pressure (Colebrook et al., 

2014). 

3.2. Cytokinins 

Cytokinins play an important role in various plant 

processes to maintain or enhance plant growth by 

reducing the effect of drought stress by enhancing the 

process of photosynthesis. Drought resistance can be 

enhanced by exogenous application and through 

modification of cytokinin synthesis (Hussain et al., 

2021; Hnatuszko-Konka et al., 2021; Rivero et al., 

2007). Cytokines are the most important hormones in 

plants that promote cell division and play an important 

role in cell growth and cytokinins. Cytokinins are 

known to be important for plant growth and drought 

resistance, which can reduce the effects of drought on 

plants through tolerance (Salvi et al., 2021). As 

cytokinins are phytohormones with both beneficial and 

detrimental effects on drought pressure (Li et al., 2016). 

Improvement or deterioration in cytokine levels is 

totally dependent on drought duration and intensity 

(Zwack and Rashotte, 2015). A trait that helps plants 

survive drought or water deficit stress can be enhanced. 

Transgene expression can also be promoted by 

cytokinin in transgenic plants. The transgenic plants 

exhibited drought tolerance in late senescence by 

limiting drought-induced leaf senescence. Adverse 

impacts of cytokinin application on drought tolerance 

have also been reported in plants (Hamayun et al., 

2021). 

Cytokinins are beneficial in plant tissue culture 

procedures and play a vital role in plant growth, e.g., 

plants flowering stage and different plant parts. 

Moreover, cytokinins are important in plant 
improvement and progress of different gametes and 

embryogenesis. Cytokines also contribute to various 

plant processes such as plant seed germination, flower 

improvement, and shoot apical meristem improvement, 

vascular improvement, leaf senescence, and 

photomorphogenesis. It can also promote drought 

resistance of plants (Mao et al., 2020). Furthermore, 

the transcription of cytokinin biosynthetic genes can be 

regulated by many phytohormones and macro-

nutrients. In Thallus cress, cell division can rise with 

the help of cytokinin by the opponent auxin. The 

expression of ATIPT5 and OPT7 can be stimulated by 

auxins, while the expression of AtIPT7, AtIPT3, 

AtIPT1 and AtIPT5 in the shoot meristem can be 

disturbed by cytokinins (Ismail H.M. et al., 2020). The 

total number of cytokinin-related genes of Thale cress 

plants was particularly more effected and transgenic 

lines of Thale cress with low cytokinin points showed 

progressively enhanced to tolerate the situations of 

drought (Nishiyama et al., 2011).  

3.3. Abscisic Acid  

Abscisic acid (ABA) is an important plant hormone 

that plays an important role in enhancing plant 

tolerance to abiotic stresses (De Ollas et al., 2013; 

Hussain et al., 2014). ABA is important in various 

plant processes like osmotic pressure in tissues and 

cells, stomata closure and gene regulation (Sarkar et al., 

2023; Xu et al., 2022). Furthermore, various stages of 

ABA in plant tissues are generally useful in altering 

various plant processes such as reducing water loss 

through transpiration or stomatal closure which 

reduces plant water loss under drought stress. Abscisic 

acid is an important hormone in plants that stimulates 

plant physiological functions under drought stress and 

climatic anomalies. For example, in the relationship 

between root and shoot growth, ABA has been shown 

to suppress growth through the effect of high-water 

levels in the root zone. However, below the influence 

of drought stress common stage of ABA is vital in 

viviparous5 or viviparous14 mutant plant root 

development. Moreover, favorable condition of ABA 

in plants is essential in root growth, especially leaf 

enlargement under adequate water supply (LeNoble et 

al., 2004). 

ABA plays an important role in plants under 

drought stress because it is a signaling hormone. Many 

proteins have been reported that constitute the ABA-

signaling pathway. Signaling pathways of ABA are 

important in appearance of drought responses. As 

ABA plays a key role in plants, they are also important 

in the transmission of signals or messages within the 

plant body to maintain plant structure and 
physiological function through ABA receptors. In the 

subcellular condition. However, it has been shown that 
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under favorable or desirable conditions, ABA was 

evident at low concentrations in plants (Parveen et al., 

2021).  

3.4. Salicylic Acid  

Plant growth under abiotic stresses is reduced 

(González-Villagra et al., 2022; Naz et al., 

2022).  Drought stress is a harmful condition in plants 

by affects various plant processes due to the limited 

availability of water in plant roots. It is a common 

problem in high-temperature regions or arid and semi-

arid regions because of low rainfall and high rate of 

evaporation (Lisar et al., 2012). Plants can ameliorate 

the effects of drought stress by regulating hormones. 

Salicylic acid is a plant hormone and plays a key role 

in plants. It is this favorable combination that can 

enhance plant tolerance to many climatic stresses by 

regulating morphological characteristics. It can help in 

the regulation of different plant functions including 

photosynthesis, stomatal closure, antioxidant defenses 

and transpiration (Nazar et al., 2015). 

Salicylic acid is clearly a stress signal molecule that 

is essential in plant abiotic stress tolerance (Li et al., 

2013). Salicylic acid is a vital phytohormone and plays 

a significant role in the regulation of plant growth.  In 

plants, it can improve growth by regulating various 

functions under the influence of drought (Farooq et al., 

2009a). In plants, it is vital in plants different processes 

like ion uptake, movement of solute in the plant body, 

plant transpiration processes, plants photosynthesis 

processes and protein synthesis (Ullah et al., 2012). 

Application of salicylic acid can increase antioxidant 

responses in date palm (Phoenix dactylifera) plants 

which results in increased drought tolerance in plants 

under drought stress (Dihazi et al., 2003). 

Salicylic acid in plants can decrease the impacts of 

drought on relative leaf water content and is 

responsible for enhancing the soluble protein synthesis 

in wheat (Khan et al., 2012). Similarly, salicylic acid 

can be produced by two pathways i.e. isochorismate 

and phenylpropanoid pathways. These two pathways 

require a chemical namely shikimate to produce these 

pathways (isochorismate and phenylpropanoid) 

(Fig.2). In various plants isochorismate pathway is 

considered the best way to produce SA (De Ollas et al., 

2013).  

4. Effect on Yield Crop  
Crop production is essentially a composite 

combination of dissimilar plant physical 

characteristics. Most of the plant processes are 
adversely affected by drought stress. Drought has 

negative impacts on crop growth which is basically 

due to the intensity of the stress and the crop 

development phase. The effects of drought stress have 

informed productivity declines in the most important 

crop grounds. Prior-flowering drought in plants 

decreased flowering time, although post-flowering 

drought decreased grain yields (EstradaCampuzano et 

al., 2008). There are four main enzymes to control 

grain size and density in grains namely ADP 

(Adenosine Diphosphate Glucose Pyrophosphorylase), 

starch synthesis, branching enzyme and Sucrose 

synthase (Taiz and Zeiger, 2006).  

Because of drought, a significant reduction in the 

activities of various enzymes has been observed; hence 

drought stress has adverse effects on the productivity 

of various major cereal crops (wheat, maize and rice) 

(Ahmadi and Baker, 2001). Due to the effects of 

drought, there is a marked reduction in plant growth 

and this reduction in plants can be due to various 

factors such as weak leaf flagellum leading to 

inadequate grain growth (Rucker et al., 1995), 

increased rate of photosynthesis which Increases the 

water requirements of plants (Flexas et al., 2004a) or 

reduce the intake of nutrients and the process of cell 

separation or division (Farooq et al., 2009b). Under 

drought stress, the corn crop begins to shed its pollen 

at the full height stage, as a result, production is 

noticeably reduced (Anjum et al., 2011). In addition, 

under drought stress a major decline in cotton 

production and termination of small-shaped mature 

fruits was noted (Pettigrew, 2004).  A prominent 

decline in barley yield has been noted in the influence 

of drought stress (Samarah, 2005). The reduction in 

crop productivity under the effects of drought in 

different field crops (Tables 1 and 2). 

5. Conclusion 

A growing world population and rapidly reducing 

resources have created a serious problem for farmers 

around the world. Drought, which is a serious problem 

for farmers all over the world, will increase in the 

coming days due to climate change and in the future, it 

will emerge as a serious problem that will damage 

more and more crops. Similarly, scientists on the other 

hand are experimenting with drought-tolerant crops to 

maximize crop yield. In this review, we will look at 

how plants use their different phytohormones to cope 

with drought stress. Such as abscisic acid, auxin, 

cytokinin and salicylic acid. These phytohormones 

trigger tolerance to drought stress via the regulation of 

various morphological, physiological, biochemical 
and molecular processes. Morphological and 

physiological processes include changes in leaf 

structure, root development and stomatal control. A 
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biochemical procedure comprises adjusting the levels 

of phytohormones. Molecular procedures comprise 

phytohormone-mediated signals, which in turn 

activate various transcription factors that cause the 

expression of genes essential for plant survival under 

drought stress. 

However, all the mechanisms by which plants 

tolerate drought by activating their hormones are not 

well understood and we need more studies to 

understand them. Also, scientists have not understood 

the crosstalk between phytohormones against drought 

stress. Because crosstalk is so complex, the underlying 

mechanisms are also unknown and require further 

study. On the other hand, various scientists are trying 

to understand the mechanism of drought stress 

tolerance of plants using exogenous phytohormones. 

Furthermore, drought stress in plants is reduced by the 

utilization of the plant microbiome. Plant microbes are 

known to produce different genes that reduce the 

effects of drought on plants and help different plants 

tolerate the effects of drought stress. In the future, 

different drought-tolerant species of crops will be 

developed to reduce the effects of drought. Maximum 

mulching is required to maintain soil moisture. It is 

important to reduce evaporation rates by using 

different cover crops. As climate change is increasing 

annually, drought stress will be a serious problem in 

the coming days. Therefore, seed varieties should be 

developed which can withstand maximum stress. 
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