Zinc biofortification of mungbean – Abstract

Journal of Environmental and Agricultural Sciences (JEAS). Dev et al., 2023. 25(1&2):1-17

Open Access – Research Article

Zinc Biofortification of Mungbean (Vigna radiata l.) as Influenced by Varieties and Zinc Fertilization
Pushkar Dev 1, Ummed Singh 1,*, L. Netajit Singh 2, Y S Shivay 3, Manoj Kumar 4, P R Raiger 5
1Department of Agronomy, College of Agriculture, Agriculture University, Jodhpur-342304, Rajasthan, India
2Department of Agricultural Statistics, College of Agriculture, Agriculture University, Jodhpur-342304, Rajasthan, India
3Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India;
4ICAR-All India Coordinated Research Project on Pearl Millet, ARS, Mandor, Jodhpur-342304, India
5Department of Soil Science and Agricultural Chemistry, College of Agriculture, Agriculture University, Jodhpur-342304, Rajasthan, India


Abstract: A field experiment was conducted during kharif season of 2019 under a factorial randomized block design replicated thrice in Zn-deficient loamy sand soil of arid region to study Zn biofortification of mungbean in four different varieties including “GM 4,” “GAM 5”, “GM 6”, and “IPM 02-3” under seven different Zn levels i.e., 0, 1, 2, 3, 4, 5, and 6 kg Zn ha-1. Mungbean genotype ‘GM 4’ substantially fetched higher Zn concentration by grain (46.6 mg kg-1) and stover (36.0 mg kg-1) and Zn uptake by grain (52.1 g ha-1) and stover (99.6 g ha-1). Application of 6 kg ha-1 Zn resulted in significantly higher Zn concentration in the grain (39.6 mg kg-1) and stover (29.2 mg kg-1). Among the mungbean varieties, ‘GM 6’ fetched substantially higher ZUE (454.6 kg grain increased kg-1 Zn applied), IZUE (11.9 kg grain kg-1 Zn uptake), and PZUE (28.1 kg grain increment g-1 Zn uptake). Application of Zn to mungbean significantly influenced the Zn use indices. Increasing levels of Zn recorded decreasing ZUE (1035.8–187.9 kg grain increased kg-1 Zn applied), IZUE (9.89–9.15 kg grain kg-1 Zn uptake), AZUE (48.6–21.9 kg grain increased kg-1 Zn applied), and PZUE (37.4–14.1 kg grain increment g-1 Zn uptake). Efficient genotype selection and appropriate Zn application are potential approaches for Zn biofortification of mungbean under Zn-deficient soil conditions.

Keywords: Biofortification, mungbean, nutrient use efficiency indices, zinc concentration
*Corresponding author: Ummed Singh, email: singhummed@yahoo.co.in


Cite this article as:

Dev, P., U. Singh, L.N. Singh, Y.S. Shivay, M. Kumar and P.R. Raiger. 2023. Zinc biofortification of mungbean (Vigna radiata L.) as influenced by varieties and zinc fertilization. Journal of Environmental & Agricultural Sciences. 25 (1&2): 1-17 [Abstract] [View Full-Text] [Citations]


Copyright © Dev et al., 2023  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium provided the original author and source are appropriately cited and credited.


Similar Articles Published in JEAS

  1. Hussain, I., G. Abbas, J. Hussain, Z. Abbas, T. Mehmoos, M. Amer, M.A. Bhatti, S. Hussain. 2023. Optimization of phosphorus and potassium fertilization rates for improving mungbean production under arid agroclimatic conditions of Thal, Punjab, Pakistan. Journal of Environmental & Agricultural Sciences. 25 (1&2): xx-XX. [Abstract]
  2. Abbas, Z., G. Abbas, J. Hussain, T. Mehmood, M. Amer, S. Hussain and M.N. Ahmad. 2021. Foliar application of macro and micronutrients enhances cotton production. Journal of Environmental & Agricultural Sciences. 23(3 & 4): 1-7. [Abstract]
  3. Haider, M.W., K. Ziaf, R. Anwar, A.U. Malik, M.M. Jahangir, R. Riaz, M. Asif, B.E. Bajwa, M.A. Ghani, Y. Majeed and C.M. Ayyub. 2022. Impact of Seed Sources, Genotypes and Fertilizer Sources on Onion Set Production Potential. Journal of Environmental & Agricultural Sciences. 24(1&2): 1-9. [Abstract] [View Full-Text]
  4. Naroua, I., S. Issaka, A.K. Saidou, R.A. Issoufou, S.M. Sadi and J.B. Aune. 2020. Effects of fertilizer micro-dosing on grain yield of cereals and legumes in Western Niger, West Africa. Journal of Environmental and Agricultural Sciences.22(2):20-25. [Abstract] [View Full-Text]
  5. Hussain, I., G. Abbas, J. Hussain, Z. Abbas, T. Mehmood, M. Amer, Q. Maqsood and I. Rasool. 2022. Application of sulphate of potash enhances mungbean (Vigna radiata) yield under agroclimatic conditions of Thal, Pakistan. Journal of Environmental& Agricultural Sciences. 24(3&4):23-28.
    [Abstract] [View Full-Text]
    .
  6. Sattar, B., S. Ahmad, I. Daur, M.B. Hussain, M. Ali, T.U. Haq, M. Arif and M. Bakhtawer. 2021. Bioactive-sulfur coated diammonium phosphate improves nitrogen and phosphorus use efficiency and maize (Zea mays L.) yield. Journal of Environmental & Agricultural Sciences. 23(3&4): 23-29. [View Full-Text]
  7. Abbas, Z., G. Abbas, J. Hussain, T. Mehmood, M. Amer, S. Hussain and M.N. Ahmad. 2021. Foliar application of macro and micronutrients enhances cotton production. Journal of Environmental & Agricultural Sciences. 23(3 & 4): 1-7.  [View Full-Text]
  8. Naroua, I., S. Issaka, A.K. Saidou, R.A. Issoufou, S.M. Sadi and J.B. Aune. 2020. Effects of fertilizer micro-dosing on grain yield of cereals and legumes in Western Niger, West Africa. Journal of Environmental and Agricultural Sciences.22(2):20-25. [View Full-Text]

References
Akram, R., Jabeen, T., Bukari, M.A., Wajid, S.A., Mubeen, M., Rasul, F., Hussain, S., Aurangzaib, M., Bukhari, M.A., Hammad, H.M. and Zamin, M., 2022. Research on Climate Change Issues. In: Building Climate Resilience in Agriculture. Springer, Cham. P.255-268.

Ali, M. F., S. B. Ali Ammar, U. Ali, N. Huma and M. Adnan. 2021. Mitigating zinc deficiency in plants and soils through agronomic techniques: A review. J. Environ. Agric. Sci. 23 (1&2): 1-10.

Bevis, L., K. Kim and D. Guerena. 2023. Soil zinc deficiency and child stunting: Evidence from Nepal. J. Health Econ. 87: 102691.

Bhatt, R., A. Hossain and P. Sharma. 2020. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: A review. Open Agric. 5: 176-187.

Boorboori, M.R., D.R. Asli, and M. Tehrani. 2012. The effect of dose and different methods of iron, zinc, manganese and copper application on yield components, morphological traits and grain protein percentage of barley plants in green house conditions. Adv. Environ. Biol. 6:740-746.

Cakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146(2):185-205.

DAC. 2017. Pulses in India: Retrospect and Prospects. Department of Agriculture, Cooperation and Farmers Welfare, Government of India. URL: https://farmer.gov.in/imagedefault/prospects_2017.pdf. Accessed 13 August 2020.

Das, S. and A. Green. 2016. Zinc in crops and human health. In: Biofortification of Food Crops (Eds., U. Singh et al. Springer (India) Pvt. Ltd., New Delhi). p. 31-40.

De Benoist, B., I. Darnton-Hill, L. Davidsson, O. Fontaine and C. Hotz. 2007. Conclusions of the joint WHO/UNICEF/IAEA/IZiNCG interagency meeting on zinc status indicators. Food Nutr. Bull. 28: S480-S484.

de Valença, A. W., A. Bake, I. D. Brouwer and K. E. Giller, 2017: Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 12: 8-14.

DES. 2021. Department of Agriculture Cooperation & Farmers Welfare, Directorate of Economics and Statistics, 2020-21, Government of India. URL: https://eands.dacnet.nic.in/APY_96_To_06.htm (Accessed on 02-02-2022).

Fan, X., X. Zhou, H. Chen, M. Tang and X. Xi. 2021. Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants. Front. Plant Sci. 12: 663477.

Fisher, R.A. and F. Yates. 1963. Statistical tables, Oliver and Boyd, Edinburgh, Tweeddate Court, London (U.K).

Fixen, P., F. Brentrup, T. Bruulsema, F. Garcia, R. Norton and S. Zingore. 2015. Nutrient/fertilizer use efficiency: measurement, current situation and trends. In: Managing Water and Fertilizer for Sustainable Agricultural Intensification (Eds. Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R. and Wichelns, D., IFA, IWMI, IPNI and IPI). p. 1-30.

Gomes, M. J. C., H. S. D. Martino and E. Tako. 2023. Zinc-biofortified staple food crops to improve zinc status in humans: a systematic review. Crit. Rev. Food Sci. Nutrit. https://doi.org/10.1080/10408398.2021.2010032

Gomez, K.A. and A.A. Gomez. 1984. Statistical procedures for agricultural research. John Wiley & sons.

Gupta, P. K., H. S. Balyan, S. Sharma and R. Kumar. 2021. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor. Appl. Genet. 134: 1-35.

Habibullah, M., T.A. Noor, M.Z.K. Roni, A.T.M. Shamsuddoha and J.A.F.M. Uddin. 2014. Influence of Different Doses of Zn on Growth and Yield of Mungbean (Vigna radiata L.). Int. J. Bus. Soc. Sci Res. 2(2):169-172.

Haider, M.U., M. Hussain, M. Farooq and A. Nawaz. 2018. Soil application of zinc improves the growth yield and grain zinc biofortification of mungbean. Soil Environ. 37:123-128.

Hassan, M.J., G.P. Zhang, F.B. Wu, K. Wei and Z. Chen. 2005. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J. Plant Nutr. Soil Sci. 168(2):255-261.

Hui, X., L. Luo, S. Wang, H. Cao, M. Huang, M. Shi, S.S. Malhi and Z. Wang. 2019. Critical concentration of available soil phosphorus for grain yield and zinc nutrition of winter wheat in a zinc-deficient calcareous soil. Plant Soil. 444: 315-330.

IZA, 2017. Fertilizing crops to improve human health. URL: https://crops.zinc.org/wp-content/uploads/sites/11/2017/01/IFA_Infographic_ZINC_V10_final.pdf.

Jackson, M.L. 1973. Soil Chemical Analysis (II Edition). Prentice Hall of India Private Limited. New Delhi, India.

Karmakar, P.C., A.H.M. Abdullah, M. Asrafuzzaman, K.K. Poddar and S. Sarker. 2015. Effects of Zinc on the Concentrations of N, P, K, S and Zn in Mungbean (Bari Mung 6) Stover and Seed. Int. J. Res. Rev. 2(6):307-310.

Khan, H.R., G.K. McDonald and Z. Rengel. 1998. Assessment of the Zn status of chickpea by plant analysis. Plant Soil. 198(1):1-9.

Khan, S. T., A. Malik, A. Alwarthan and M. R. Shaik. 2022. The enormity of the zinc deficiency problem and available solutions; an overview. Arabian J. Chem. 15: 103668.

Kiran, A., A. Wakeel, K. Mahmood, R. Mubaraka, Hafsa and S. M. Haefele. 2022. Biofortification of staple crops to alleviate human malnutrition: contributions and potential in developing countries. Agronomy. 12: 452.

Lagoriya, D. S., S. J. Harishma and S. K. Singh. 2023. Agronomical Approaches for Biofortification of Cereal Crops. In: R. Deshmukh, A. Nadaf, W. A. Ansari, K. Singh and H. Sonah eds. Biofortification in Cereals: Progress and Prospects. Springer Nature Singapore, Singapore. p. 1-19.

Lindsay, W.L. and W.A. Norvell. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am. J. 42: 421-428.

Ma, Q., R. W. Bell and E. M. Mattiello. 2022. Nutrient Acquisition with Particular Reference to Subsoil Constraints. In: T. S. d. Oliveira and R. W. Bell eds. Subsoil Constraints for Crop Production. Springer International Publishing, Cham. p. 289-321.

Moussavi-Nik, M.S. and Z. Kiani. 2012.Considering interaction effects of micro nutrition’s elements (Fe, Zn and Mn) on qualitative yield of wheat varieties. Ann. Biol. Res. 2:1467-1472.

Natasha, N., M. Shahid, I. Bibi, J. Iqbal, S. Khalid, B. Murtaza, H. F. Bakhat, A. B. U. Farooq, M. Amjad, H. M. Hammad, N. K. Niazi and M. Arshad. 2022. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 808: 152024.

Nath, C. P., N. Kumar, A. Dutta, K. K. Hazra, C. S. Praharaj, S. S. Singh and K. Das. 2023. Pulse crop and organic amendments in cropping system improve soil quality in rice ecology: Evidence from a long–term experiment of 16 years. Geoderma. 430: 116334.

Nawaz, H., N. Hussain, A. Yasmeen, M. Arif, M. Hussain, M.I.A. Rehmani, M.B. Chattha and A. Ahmad. 2015. Soil applied zinc ensures high production and net returns of divergent wheat cultivars. J. Environ. Agric. Sci. 2(1):1-7.

Olsen, S., C. Cole, F. Watanabe and L. Dean.1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular, no. 939, Government Print Office, Washington, D.C.

Ozturk, Levent., M.A. Yazici, C. Yucel,  A. Torun, C. Cekic, A. Bagci, H. Ozkan,  H.J. Braun, Z. Sayers and I. Cakmak. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiol. Plant. 128(1):144-152.

Praharaj, S., M. Skalicky, S. Maitra, P. Bhadra, T. Shankar, M. Brestic, V. Hejnak, P. Vachova and A. Hossain. 2021. Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health. Molecules. 26: 3509.

Prasad, R. 2012. Micro mineral nutrient deficiencies in humans, animals and plants and their amelioration. Proc. Nat. Acad. Sci. India Section B: Biol. Sci. 82 (2):225–33.

Prasad, R., Y.S. Shivay and D. Kumar. 2013. Zinc fertilization of cereals for increased production and alleviation of zinc malnutrition in India. Agric. Res. 2(2):111–8.

Prasad, R., Y.S. Shivay and D. Kumar. 2014. Agronomic bio-fortification of cereal grains with zinc and iron. Adv. Agron. 125:55–91.

Rattan, R.K., S.P. Datta and J.C. Katyal. 2008. Micronutrient management-research achievements and future challenges. Indian J. Fert. 4(12):93–118

Rehman, A., M. Farooq, L. Ozturk, M. Asif and K. H. M. Siddique. 2018. Zinc nutrition in wheat-based cropping systems. Plant Soil. 422: 283-315.

Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soil. USDA Hand Book No. 60 Oxford & IBH Publication Company, New Delhi.

Saeed, B., A. Nawab and S. Rani. 2020. Genotypic variation in micronutrient composition of potato (Solanum tuberosum). J. Environ. Agric. Sci. 22(1): 64-70.

Samreen, T., Humaira, H. U. Shah, S. Ullah and M. Javid. 2017. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arabian J. Chem. 10: S1802-S1807.

Sangeetha, V. J., S. Dutta, J. A. Moses and C. Anandharamakrishnan. 2022. Zinc nutrition and human health: Overview and implications. eFood 3: e17.

Saudy, H. S., G. A. A. El–Samad, M. E. El–Temsah and Y. A. E. G. El–Gabry. 2022. Effect of Iron, Zinc, and Manganese Nano-Form Mixture on the Micronutrient Recovery Efficiency and Seed Yield Response Index of Sesame Genotypes. J. Soil Sci. Plant Nutrit. 22: 732-742.

Shivay, Y.S., R. Prasad and M. Pal. 2014. Effect of variety and zinc application on yield, profitability, protein content and zinc and nitrogen uptake by chickpea (Cicer arietinum). Indian J. Agron. 59(2):317–321.

Shivay, Y.S., R. Prasad and M. Pal. 2015. Effect of source and method of zinc application on yield, zinc biofortification of grain and Zn uptake and use efficiency in chickpea (Cicer arietinum L.). Commun. Soil Sci. Plant Anal. 46(17):2191–2200.

Shukla, A.K. and S.K. Behera. 2012. Micronutrient fertilizer and higher productivity. Indian J. Fert. 8(4):100–117.

Shukla, A.K., S.K. Behera, Y.S. Shivay, P. Singh and A.K. Sing. 2012. Micronutrient and field crop production in India: A review. Indian J. Agron. 57:123–30.

Sihag, J., D. Prakash and P. Yadav. 2020. Evaluation of Soil Physical, Chemical Parameter and Enzyme Activities as Indicator of Soil Fertility with SFM Model in IA–AW Zone of Rajasthan. In: Soft Computing: Theories and Applications, Singapore.

Singh, D. and R. Prasanna, 2020. Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agron. Sustain. Develop. 40: 15.

Singh, N.P. and A. Pratap. 2016. Food Legumes for Nutritional Security and Health Benefits In: Biofortification of Food Crops (Eds., U. Singh et al. Springer (India) Pvt. Ltd., New Delhi). p. 479-492.

Singh, S.S., K.K. Hazra, C.S. Praharaj and U. Singh. 2016c. Biofortification: Pathway Ahead and Future Challenges In: Biofortification of Food Crops (Eds., U. Singh et al. Springer (India) Pvt. Ltd., New Delhi). p. 479-492.

Singh, U. and C.S. Praharaj. 2017. Practical Manual-Chemical Analysis of Soil and Plant Samples, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh- 208 024, India. p. 58.

Singh, U. and I.P.S. Ahlawat. 2007. Phosphorus management in pigeon pea – wheat cropping system. Indian J. Agron. 52(1):21-26.

Singh, U., C.S. Praharaj, S.K. Chaturvedi and A. Bohra. 2016b. Biofortification: Introduction, Approaches, Limitations and Challenges In: Biofortification of Food Crops (Eds., Ummed Singh et al. Springer (India) Pvt. Ltd., New Delhi). p. 3-18.

Singh, U., C.S. Praharaj, S.S. Singh and N.P. Singh. 2016a. Biofortification of Food Crops. Springer (India) Pvt. Ltd. https://doi.org/10.1007/978-81-322-2716-8

Srivastava, A.K., P.N. Tripathi, A.K. Singh and R. Singh. 2006. Effect of rhizobium inoculation, sulphur and zinc levels on growth, yield, nutrient uptake and quality summer of greengram (Phaselous radiatus L). Int. J. Agric.Sci. 2(1):190-192.

Steel, R.G.D., J.H. Torrie and D.A. Dicky. 1997. Principles and procedures of statistics: A biometrical approach. 3rd eds. New York: McGraw Hill Book Co. Inc. p. 400–28.

Subbiah, B.V. and G.L. Asija. 1965. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 25:259-260.

Suganya, A., A. Saravanan and N. Manivannan, 2020: Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. Plant Anal. 51: 2001-2021.

Sultana, S., R. W. Bell and W. H. Vance. 2020. Genotypic variation among chickpea and wild Cicer spp. in nutrient uptake with increasing concentration of solution Al at low pH. Plant Physiol. Biochem. 157: 390-401.

Tak, S., S.K. Sharma, and M.L. Reager. 2014. Effect of vermicompost and zinc on yield attributes, yield and quality of green gram [Vigna radiata var. aureus (L.) Wilczek] in arid western Rajasthan. Int. J. Agric. Sci. 10(1):138-141.

Tisdale, S.L., W.L. Nelson, J.D. Beaton and J.L. Havlin. 2010. Soil fertility and fertilizer: An introduction to nutrient management. PHI Learning Pvt. Ltd., New Delhi, pp. 184.

Venkatesh, M.S., K.K. Hazra and P.K. Ghosh. 2014. Critical tissue concentration of zinc in short duration mungbean (Vigna radiata). Indian J. Agric. Sci. 84(7):892-895.

Walkley, A.J. and I.A. Black. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37(1):29-38.

WHO, 2000; World Health Organization. The world health report, health systems: improving performance; 2000, p. 1–10.

Williams, C.H., A. Steinbergs. 1959. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Aust. J. Agric. Res. 10:340-352.

Yaseen, M. K. and S. Hussain. 2021. Zinc-biofortified wheat required only a medium rate of soil zinc application to attain the targets of zinc biofortification. Archiv. Agron. Soil Sci. 67: 551-562.

Yilmaz, A., H. Ekiz, B. Torun, I. Gultekin, S. Karanlik, S.A. Bagci and I. Cakmak.1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcareous soils in Central Anatolia. J. Plant Nut. 20(4-5):461-471.

Yoshida, S. 1981. Fundamental of Rice Crop Science. International Rice Research Institute, Los Baños, Laguna, Philippines, p.269.

 

2 Replies to “Zinc biofortification of mungbean – Abstract

  1. what was the optimal level of zinc fertilization for maximizing grain?

  2. Why different varieties exhibit higher zinc uptake or translocation efficiency?

Leave a Reply

Your email address will not be published. Required fields are marked *