Identification of volatile constituents and biological activity potential of Abelia triflora – Abstract

Journal of Environmental and Agricultural Sciences (JEAS). Sahifa et al., 2024. Volume 26(1&2): 1-10

Open Access – Research Article

Identification of volatile constituents and biological activity potential of Abelia triflora

Sahifa 1, Samar Ali 1, Maria Bibi 1
1 Department of Chemistry, Faculty of Science, University of Balochistan, Quetta, Pakistan


Abstract: Abelia triflora, a member of the plant family i.e., Caprifoliaceae, is known for its pharmaceutical properties including antioxidant, antibacterial, anti-inflammatory, and anticancer benefits. An experiment was performed to investigate the insecticidal and antibiotic potential of A. triflora. It is widely distributed under diverse ecological conditions including America and Eastern Asia. Main objectives of this study were to explore the biological activities of A. triflora and describe its chemical constituents. Two plant extracts i.e., ethyl acetate and n-hexane, were isolated from the A. triflora plants and tested for their insecticidal and antibacterial characteristics. Moreover, the n-hexane fraction was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS) to recognize its chemical constituents.

The GC MS analysis identified 36 phytochemicals like fatty acids, phenols, stigmasterols, and vitamins, often linked with various biological activities. The insecticidal activity tests of n-hexane extract were promising and demonstrated strong efficacy (100% inhibition) against Sitophilus oryzae (rice weevil), a notorious grain pest. However, the extract was not effective in controlling other investigated insect species like Callosobruchus analis, Rhyzopertha dominicia, Tribolium castaneum, and Trogoderma granarium.

On the other hand, ethyl acetate fraction of A. triflora was ineffective against the tested insect species. Moreover, the ethyl acetate fraction showed moderate inhibition (46.57%) of Staphylococcus aureus, a common bacterium. The n-hexane fraction, however, showed no antibacterial activity. These findings suggest the phytochemical potential of A. triflora against insects and bacteria. Further studies may help to explore its full potential for developing medicines or natural pest control solutions.

Keywords: GC MS, bactericidal activity, insecticidal activity,  Phytochemicals, biological pest control, Abelia triflora,
*Corresponding author: Sahifa


Cite this article as:
Sahifa, S. Ali and M. Bibi. 2024. Identification of Volatile Constituents and Biological Activity Potential of Abelia triflora. Journal of Environmental & Agricultural Sciences. 26 (1&2): 1-10. [Abstract] [View Full-Text] [Citations]


Identification, volatile constituents, biological activity potential, Abelia triflora

Copyright © Sahifa et al., 2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium provided the original author and source are appropriately cited and credited.


Similar Articles Published in JEAS

  • Majeed, Y., K. Ziaf, M.A. Ghani, I. Ahmad, M.A. Ahmad, K.Y. Abbasi, H. Mujahid and K.L. Cheema. 2020. Effect of different combinations of organic and synthetic sources of nutrients on growth, yield and quality parameters of turmeric under Faisalabad conditions. Journal of Environmental & Agricultural Sciences. 22(4): 1-7. [Abstract] [View Full-Text] [Citations]
  • Imran, M., A. Rauf, A. Imran, M. Nadeem, Z. Ahmad, M. Atif, M. Awais, M. Sami, M. Imran, Z. Fatima and A.B. Waqar. 2017. Health benefits of grapes polyphenols. Journal of Environmental and Agricultural Sciences. 10: 40-51. [Abstract] [View Full-Text] [Citations]
  • Qaisrani, T.B., M.M. Qaisrani and T.M. Qaisrani. 2016. Arabinoxylans from psyllium husk: A review. Journal of Environmental & Agricultural Sciences. 6: 33-39. [Abstract] [View Full-Text] [Citations]

References

Acharya, J. and A. Mukherjee. 2017. A checklist of the family Caprifoliaceae Juss. in India. Indian J. Sci. Res. 15 (1): 37-45.

Al Hashmi, L.S., M.A. Hossain, A.M. Weli, Q. Al-Riyami and J.N. AlSabahi. 2013. Gas chromatography–mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L. Asian Pac. J. Trop. Biomed. 3: 69-73. https://doi.org/10.1016/S2221-1691(13)60026-X

Al-Khayri, J.M., R. Rashmi, V. Toppo, P.B. Chole, A. Banadka, W.N. Sudheer, P. Nagella, W.F. Shehata, M.Q. Al-Mssallem, F.M. Alessa, et al. 2023. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites. 13: 716.https://doi.org/10.3390/metabo13060716 

AlSheikh, H.M.A., I. Sultan, V. Kumar, I.A. Rather, H. Al-Sheikh, A. Tasleem Jan and Q.M.R. Haq. 2020. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics. 9: 480. https://doi.org/10.3390/antibiotics9080480

Álvarez-Martínez, F.J., E. Barrajón-Catalán, M. Herranz-López and V. Micol. 2021. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine. 90: 153626. https://doi.org/10.1016/j.phymed.2021.153626

Ayati, Z., J. Sarris, D. Chang, S.A. Emami and R. Rahimi. 2020. Herbal medicines and phytochemicals for obsessive–compulsive disorder. Phytotherapy Research. 34: 1889-1901. https://doi.org/10.1002/ptr.6656

Balouiri, M., M. Sadiki and S.K. Ibnsouda. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005 

Barbieri, R., E. Coppo, A. Marchese, M. Daglia, E. Sobarzo-Sánchez, S.F. Nabavi and S.M. Nabavi. 2017. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 196: 44-68. https://doi.org/10.1016/j.micres.2016.12.003

Bernardini, S., A. Tiezzi, V. Laghezza Masci and E. Ovidi. 2018. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 32: 1926-1950. https://doi.org/10.1080/14786419.2017.1356838

Chandra, G., D. Mukherjee, A.S. Ray, S. Chatterjee and I. Bhattacharjee. 2020. Phytoextracts as Antibacterials: A Review. Curr. Drug Discov. Technol. 17: 523-533. https://doi.org/10.2174/1570163816666191106103730

Chávez-Arias, C.C., A. Ramírez-Godoy and H. Restrepo-Díaz. 2022. Influence of drought, high temperatures, and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review. Current Plant Biology. 32: 100268. https://doi.org/10.1016/j.cpb.2022.100268

Chrząszcz, M., B. Krzemińska, R. Celiński and K. Szewczyk. 2021. Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) genus. Plants. 10: 952. https://doi.org/10.3390/plants10050952

Collares, L.J., L.M. Turchen and R.N.C. Guedes. 2023. Research Trends, Biases, and Gaps in Phytochemicals as Insecticides: Literature Survey and Meta-Analysis. Plants. 12: 318. https://doi.org/10.3390/plants12020318

Cornara, L., G. Ambu, D. Trombetta, M. Denaro, S. Alloisio, J. Frigerio, M. Labra, G. Ghimire, M. Valussi and A. Smeriglio. 2021. Multidisciplinary Screening of Three Species belonging to Caprifoliaceae Family Traditionally Used as Antidepressants. Biol. Life Sci. Forum. 4: 2. https://doi.org/10.3390/IECPS2020-08643

Enerijiofi, K.E., F.H. Akapo and J.O. Erhabor. 2021. GC–MS analysis and antibacterial activities of Moringa oleifera leaf extracts on selected clinical bacterial isolates. Bullet. Nat. Res. Centre. 45: 179. https://doi.org/10.1186/s42269-021-00640-9

Fawzy, G.A., S. Perveen, A.M. Al-Taweel, R.S. Orfali, L. Iqbal, M. Lateef, R.B. Tareen and S.I. Khan. 2017. Evaluation of some biological activities of Abelia triflora R Br (Caprifoliaceae) constituents. Tropical J. Pharm. Res. 16: 319-325. https://doi.org/10.4314/tjpr.v16i2.9

Fitzgerald, M., M. Heinrich and A. Booker, 2020: Medicinal Plant Analysis: A Historical and Regional Discussion of Emergent Complex Techniques. Front. Pharmacol. 10: 1480. https://doi.org/10.3389/fphar.2019.01480

Gautam, S. and M.K. Dwivedi. 2022. An Overview of Phytochemicals, Key Classes, Their Importance, and Current Update. Isolation, Characterization, and Therapeutic Applications of Natural Bioactive Compounds. 1-21. https://doi.org/10.4018/978-1-6684-7337-5.ch001

Ghimire, B., G. U. Suh, C. H. Lee, K. Heo and M. J. Jeong, 2018: Embryological studies on Abelia tyaihyoni Nakai (Caprifoliaceae). Flora 242, 79-88. https://doi.org/10.1016/j.flora.2018.03.008

Górniak, I., R. Bartoszewski and J. Króliczewski. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 18: 241-272. https://doi.org/10.1007/s11101-018-9591-z

Guan, R., Q. Van Le, H. Yang, D. Zhang, H. Gu, Y. Yang, C. Sonne, S.S. Lam, J. Zhong, Z. Jianguang, et al. 2021. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere. 271: 129499.  https://doi.org/10.1016/j.chemosphere.2020.129499

Hossen, I., W. Hua, L. Ting, A. Mehmood, S. Jingyi, X. Duoxia, C. Yanping, W. Hongqing, G. Zhipeng, Z. Kaiqi, et al. 2022. Phytochemicals and inflammatory bowel disease: a review. Crit. Rev. Food Sci. Nutrit. 60: 1321-1345. https://doi.org/10.1080/10408398.2019.1570913

Kanthal, L.K., A. Dey, K. Satyavathi and P. Bhojaraju. 2014. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC. Pharmacognosy Res. 6: 58-61. https://doi.org/10.4103/0974-8490.122919

Khare, S., N.B. Singh, A. Singh, I. Hussain, K. Niharika, V. Yadav, C. Bano, R.K. Yadav and N. Amist. 2020. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 63: 203-216. https://doi.org/10.1007/s12374-020-09245-7   

Konappa, N., A.C. Udayashankar, S. Krishnamurthy, C.K. Pradeep, S. Chowdappa and S. Jogaiah. 2020. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep. 10: 16438. https://doi.org/10.1038/s41598-020-73442-0 

Krause, J. and G. Tobin. 2013. Discovery, Development, and Regulation of Natural Products. In: K. Marianna ed. Using Old Solutions to New Problems. p. Ch. 1. IntechOpen, Rijeka. p. 1-35. https://doi.org/10.5772/56424

Landrein, S. and A. Farjon. 2019. A monograph of Caprifoliaceae: Linnaeeae. Kew Bullet. 74: 70. https://doi.org/10.1007/s12225-018-9762-5

Landrein, S., G. Prenner, M. W. Chase and J. J. Clarkson. 2012. Abelia and relatives: phylogenetics of Linnaeeae (Dipsacales–Caprifoliaceae s.l.) and a new interpretation of their inflorescence morphology. Bot. J. Linn. Soc. 169: 692-713. https://doi.org/10.1111/j.1095-8339.2012.01257.x 

Landrein, S., S. Buerki, H.-F. Wang and J. J. Clarkson. 2017. Untangling the reticulate history of species complexes and horticultural breeds in Abelia (Caprifoliaceae). Ann. Bot. 120: 257-269. https://doi.org/10.1093/aob/mcw279

Mostafa, A.A., A.A. Al-Askar, K.S. Almaary, T.M. Dawoud, E.N. Sholkamy and M.M. Bakri. 2018. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 25: 361-366. https://doi.org/10.1016/j.sjbs.2017.02.004

Mostafa, M., H. Hossain, M.A. Hossain, P.K. Biswas and M.Z. Haque. 2012. Insecticidal activity of plant extracts against Tribolium castaneum Herbst. J. Adv. Sci. Res. 3: 80-84.

Qaderi, M.M., A.B. Martel and C.A. Strugnell. 2023. Environmental Factors Regulate Plant Secondary Metabolites. Plants. 12: 447. https://doi.org/10.3390/plants12030447

Rozirwan, R., M. Muhtadi, T.Z. Ulqodry, R.Y. Nugroho, N.N. Khotimah, F. Fauziyah, W.A.E. Putri, R. Aryawati and C.A.R. Mohamed. 2023. Insecticidal activity and phytochemical profiles of Avicennia marina and Excoecaria agallocha leaves extracts. ILMU KELAUTAN: Indonesian J. Mar. Sci. 28: 148-160.

Satish, L., S. Shamili, S. Yolcu, G. Lavanya, H. Alavilli and M.K. Swamy. 2020. Biosynthesis of Secondary Metabolites in Plants as Influenced by Different Factors. In: M. K. Swamy, editor Plant-derived Bioactives: Production, Properties and Therapeutic Applications. Springer Singapore, Singapore. p. 61-100. https://doi.org/10.1007/978-981-15-1761-7_3  

Sayono, S., R. Anwar and D. Sumanto. 2022. Larvicidal activity evaluation of the chemical compounds isolated from n-hexane extract of Derris elliptica root against the Temephos-susceptible strain of Aedes aegypti larvae. Biodiversitas. 23: 757-764. https://doi.org/10.13057/biodiv/d230221

Scobie, A.R. and C.C. Wilcock. 2009. Limited mate availability decreases reproductive success of fragmented populations of Linnaea borealis, a rare, clonal self-incompatible plant. Ann. Bot. 103: 835-846. https://doi.org/10.1093/aob/mcp007

Shang, X., J. Wang, M. Li, X. Miao, H. Pan, Y. Yang and Y. Wang. 2011. Antinociceptive and anti-inflammatory activities of Phlomis umbrosa Turcz extract. Fitoterapia. 82: 716-721. https://doi.org/10.1016/j.fitote.2011.03.001

Sharma, A., R.d.C. Flores-Vallejo, A. Cardoso-Taketa and M.L. Villarreal. 2017. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 208: 264-329. https://doi.org/10.1016/j.jep.2016.04.045

Sharma, A., S. Sharma, A. Kumar, V. Kumar and A.K. Sharma. 2022. Plant Secondary Metabolites: An Introduction of Their Chemistry and Biological Significance with Physicochemical Aspect. In: A. K. Sharma and A. Sharma, editors, Plant Secondary Metabolites: Physico-Chemical Properties and Therapeutic Applications. Springer Nature Singapore, Singapore. p. 1-45. https://doi.org/10.1007/978-981-16-4779-6_1

Shirsath, N.R. and A.K. Goswami. 2020. Natural phytochemicals and their therapeutic role in management of several diseases: a review. Curr. Tradit. Med. 6: 43-53. https://doi.org/10.2174/2215083805666190807111817

Sofowora, A., E. Ogunbodede and A. Onayade. 2013. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement Altern. Med. 10: 210-229. https://doi.org/10.4314/ajtcam.v10i5.2

Sun, W. and M.H. Shahrajabian. 2023. Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules. 28: 1845. https://doi.org/10.3390/molecules28041845

Twaij, B.M. and M.N. Hasan. 2022. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 13: 4-14. https://doi.org/10.3390/ijpb13010003

Villarreal-Quintanilla, J.Á., J.L. Villaseñor-Ríos and E. Estrada-Castillón. 2013. Systematics of the genus Abelia (Caprifoliaceae) in Mexico. Acta Botánica Mexicana. 99-128. (In Spanish with English Abstract)

Xu, Z. and L. Chang. 2017. Caprifoliaceae. Identification and Control of Common Weeds: Volume 3. Springer Singapore, Singapore. p. 405-416. https://doi.org/10.1007/978-981-10-5403-7_17

Zhou, J., M. Ouedraogo, F. Qu and P. Duez. 2013. Potential Genotoxicity of Traditional Chinese Medicinal Plants and Phytochemicals: An Overview. Phytotherapy Res. 27: 1745-1755. https://doi.org/10.1002/ptr.4942

Leave a Reply

Your email address will not be published. Required fields are marked *