Palynological features of medicinal plants from Salt Ranges of Pakistan

Aneela Zahoor^{1,*}, Farooq Ahmad¹, Mansoor Hameed¹ Mehwish Naseer³ and Naila Irum¹

Edited by: Robina Aziz,

Government College Wemen University, Sialkot, Pakistan

Reviewed by: Muhammad Saeed,

G.C. University Faisalabad, Faisalabad, Pakistan

Qasim Sahid,

South China Agricultural University, Guangzhou, China

Received

June 29, 2019

Accepted

September 14, 2019 **Published Online** December 28, 2019 Abstract: Palynology is utilized for distinction and identification of various plants on the basis of their pollens that vary in quantitative as well as in qualitative structures. For this, medicinal plants were collected randomly from various sites of Salt areas. 33 plants belonging to 30 genera were selected and their locality, habitat, date of collection and inflorescence color were noted during collection visits and preserved in herbarium of Department of Botany, University of Agriculture, Faisalabad, Pakistan. Qualitative traits i.e., pollen shapes (both in equatorial and polar view), pollen types and presence of colpi, while quantitative features i.e., colpi width, length, number, exine thickness, polar and equatorial diameter, Polar/Equatorial ratio and pollen fertility were measured. Multivariate (cluster) analysis was used to assess relationship among diverse genera and species. In all species both qualitative and quantitative traits varied in one and in another respect that shows that these characters are vital in systematics and every species have its own pollen traits. Our study concluded that palynology can be useful in solving systematics problems. Each plant species has some unique morphological pollen characters, which can be further merged to extract generic and family level pollen traits. Exine ornamentation and sculpturing proved to be useful at generic and species level.

Keywords: Pollen, palynology, exine, colpi, systematics, taxonomy, medicinal plants, diversity *Corresponding author: Aneela Zahoor: aneelazahoor.bot@gmail.com

Cite this article as: Zahoor, A., F. Ahmad and M. Hameed. M. Naseer and N. Irum. 2019. Palynological features of certain medicinal plants from Salt Ranges of Pakistan. Journal of Environmental& Agricultural Sciences. 21:29-37.

This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium provided the original author and source are properly cited and credited.

1. Introduction

Pollen and spore study is called palynology and this technique is vital because pollen can be used as identifying marker and indicator in organization and used in evolutionary record (Chambers et al., 2011). Pakistan is a blessed country that has mixture of ecological surroundings, topographical areas and atmosphere that inherited with vital medicinal flora used in therapeutic medicine (Nisar et al., 2011). Therefore, taxonomist, ethnobotanist, phytochemist and ethnopharmacologists work hard to find more precious and medicinal plants from different sites of Pakistan (Nisar et al., 2011).

Plants species are vital in every respect on this planet (Ahmad et al., 2010). Medicinal properties of plants make them unique and their great varieties are present is saline areas of Pakistan (Mushtaq et al., 2012; Nadeem et al., 2013). Therefore, salt affected lands, enriched with plant diversity, always attracted

researchers (Ahmad et al., 2010). Choha Sadden Shah, Kalar Kahar, Soon Velly, roadsides of motorway and Khewra has excessive variety of plants that are all salt affected lands (Khan et al., 2011). Uncountable and distinctive natural resources are present at these sites. Their environmental conditions are suitable for these unique plant species (Ahmad et al., 2012). These plants have their individual commercial and curative values, many plants species of salted areas are about to loss so researchers focus on these areas recently so that they can conserve most important medicinal plants (Nawaz et al., 2012).

The great diversity of pollens makes them unique and crucial in systematic study (Devarkar, 2011). That helps in evolution record because of their distinctive characteristics of pollen structure, composition, exine, aperture of different flora when viewed through scanning and light microscope. That are very crucial is systematic studies (Chung et al., 2010).

Fig. 1. Sample collection area (A) Map (B) panoramic view of Salt Range, Pakistan

Table 1: Source of Pollen material used in this study

Sr. No.	Family	Taxon	Locality	District	Collector	
1	Acanthaceae	Dicliptera bupleuroides	Kalar Kahar	Chakwal	Authors	
2	Apiaceae	Unknown	Kalar Kahar	Chakwal	Authors	
3	Asclepiadaceae	Calotropis procera	Kalar Kahar	Chakwal	Authors	
4	Asparagaceae	Asparagus adscendens	Sodhi	Khushab	Authors	
5	Asteraceae	Cotula hemisphaerica	Kalar Kahar	Chakwal	Authors	
6	Asteraceae	Aster laevis	Kalar Kahar	Chakwal	Authors	
7	Boraginaceae	Trichodesma indicum	Kalar Kahar	Chakwal	Authors	
8	Brassicaceae	Nasturtium officinale	Kalar Kahar	Chakwal	Authors	
9	Brassicaceae	Sisymbrium irio	Kalar Kahar	Chakwal	Authors	
10	Caryophyllaceae	Stellaria media	Kalar Kahar	Chakwal	Authors	
11	Convolvulaceae	Convolvulus arvensis	Kalar Kahar	Chakwal	Authors	
12	Euphorbiaceae	Croton bonplandianus	Kalar Kahar	Chakwal	Authors	
13	Euphorbiaceae	Euphorbia helioscopia	Kalar Kahar	Chakwal	Authors	
14	Fabaceae	Prosopis juliflora	Kanhati Garden	Khushab	Authors	
15	Hypericaceae	Hypericum calycinum	Sakesar	Khushab	Authors	
16	Lamiaceae	Clerodendrum fragrans	Kalar Kahar	Chakwal	Authors	
17	Malvaceae	Malvaviscus arborea	Kalar Kahar	Chakwal	Authors	
18	Myrsinaceae	Anagallis arvensis	Kalar Kahar	Chakwal	Authors	
19	Oxalidaceae	Oxalis corymbosa	Kalar Kahar	Chakwal	Authors	
20	Plantaginaceae	Bacopa monnieri	Kalar Kahar	Chakwal	Authors	
21	Plantaginaceae	Plantago lanceolata	Kalar Kahar	Chakwal	Authors	
22	Plantaginaceae	Plantago major	Kalar Kahar	Chakwal	Authors	
23	Poaceae	Cynodon dactylon	Kalar Kahar	Chakwal	Authors	
24	Poaceae	Dichanthium annulatum	Kalar Kahar	Chakwal	Authors	
25	Poaceae	Panicum antidotale	Kalar Kahar	Chakwal	Authors	
26	Polygonaceae	Polygonum plebejum	Sodhi	Khushab	Authors	
27	Pontederiaceae	Eichhornia crassipes	Kalar Kahar	Chakwal	Authors	
28	Ranunculaceae	Ranunculus muricatus	Kalar Kahar	Chakwal	Authors	
29	Ranunculaceae	Ranunculus sceleratus	Kalar Kahar	Chakwal	Authors	
30	Scrophulariaceae	Mazus goodenifolius	Naushahra	Khushab	Authors	
31	Scrophulariaceae	Verbascum thapsus	Kanhati Garden	Khushab	Authors	
32	Verbenaceae	Verbena officinalis	Kalar Kahar	Chakwal	Authors	
33	Verbenaceae	Verbena tenuisecta	Kalar Kahar	Chakwal	Authors	

It is hypothesized that palynology can be used as an aid in identification and differentiation of important medicinal plants of the area that can be used to solve systematics problems

2. Materials and Methods

The research was done during 2011-2013 in the Experimental Taxonomy Laboratory, Department of Botany, University of Agriculture, Faisalabad, Pakistan. The trial was limited to study the morphology and palynology of medicinal plants of Salt Range of Pakistan (Fig. 1).

2.1. Collection and Preservation of Medicinal **Plant**

During different season, many visits were made for collection of medicinal plants from salted areas of Pakistan. 33 plants species relevant to 30 genera were collected randomly from different sites (Table 1). Plants were dehydrated, preserved by using standard herbarium methods and deposited to the Herbarium of the Botany Department, University of Agriculture, Faisalabad.

2.2. Palynological Studies

Camera equipped with light microscope (Nikon 104, Japan) was used to study pollen morphology.

Table 2. Qualitative characteristics regarding pollen of different plant species from Salt Range of Pakistan

Sr.		aracteristics regarding p	Shape in polar	Shape in		Pollen	
No.	Family	Taxon	view	Equatorial view	Pollen type	sculpturing	
1	Acanthaceae	Dicliptera bupleuroides	Oblate spheroidal	Oblate	Tricolpate	Reticulate	
		T	P	Curvilinear	F		
2	Apiaceae	Unknown	Spheroidal	triangular	Tricolpate	Rugulate	
3	Asclepiadaceae	Calotropis procera	•		Pollinium		
4	Asparagaceae	Asparagus adscendens	Spheroidal	Rhomboidal	Monolete	Reticulate	
5	Asteraceae	Cotula hemisphaerica	Spheroidal	Rhomboidal	Tricolpate	Psilate	
6	Asteraceae	Aster laevis	Oblate spheroidal	Rhomboidal	Monocolpate	Psilate	
7	Boraginaceae	Trichodesma indicum	Spheroidal	Star shaped	Pentacolpate	Psilate	
8	Brassicaceae	Nasturtium officinale	Oblate spheroidal	Ellipse	Tricolpate	Reticulate	
9	Brassicaceae	Sisymbrium irio	Sub circular	Ellipse	Monocolpate	Reticulate	
10	Caryophyllaceae	Stellaria media	Oblate spheroidal	Trapezoid	Monocolpate	Scabrate	
11	Convolvulaceae	Convolvulus arvensis	Spheroidal	Ellipse	Zonocolpate	Reticulate	
12	Euphorbiaceae	Croton bonplandianus	Oblate spheroidal	Ellipse	Tricolpate	Scabrate	
13	Euphorbiaceae	Euphorbia helioscopia	Sub circular	Oval	Inaperturate	Scabrate	
14	Fabaceae	Prosopis juliflora	Spheroidal	Oval	Dicolpate	Reticulate	
15	Hypericaceae	Hypericum calycinum	Oblate spheroidal	Ellipse	Zonocolpate	Reticulate	
16	Lamiaceae	Clerodendrum fragrans	Sub circular	Ellipse	Monocolpate	Reticulate	
17	Malvaceae	Malvaviscus arborea	Marquise	Pentagone	Dicolpate	Rugulate	
18	Myrsinaceae	Anagallis arvensis	Sub spheroidal	Ellipse	Monocolpate	Foveolate	
19	Oxalidaceae	Oxalis corymbosa	Oblate spheroidal	Ellipse	Monocolpate	Foveolate	
20	Plantaginaceae	Bacopa monnieri	Sub circular	Ellipse	Dicolpate	Foveolate	
21	Plantaginaceae	Plantago lanceolata	Spheroidal	Heart shaped	Monocolpate	Foveolate	
22	Plantaginaceae	Plantago major	Star shaped	Ellipse	Zonocolpate	Foveolate	
23	Poaceae	Cynodon dactylon	Oblate	Triangular	Tricolpate	Verrucate	
24	Poaceae	Dichanthium annulatum	Oval	Ellipse	Dicolpate	Rugulate	
25	Poaceae	Panicum antidotale	Oblate spheroidal	Ellipse	Dicolpate	Verrucate	
26	Polygonaceae	Polygonum plebejum	Heart shaped	Ellipse	Monocolpate	Reticulate	
27	Pontederiaceae	Eichhornia crassipes	Sub circular	Oval	Monocolpate	Verrucate	
28	Ranunculaceae	Ranunculus muricatus	Sub circular	Oval	Tricolpate	Scabrate	
29	Ranunculaceae	Ranunculus sceleratus	Sub circular	Rectangular	Inaperturate	Scabrate	
30	Scrophulariaceae	Mazus goodenifolius	Oval	Ellipse	Tricolpate	Scabrate	
				Curvilinear			
31	Scrophulariaceae	Verbacum thapsus	Sub circular	triangular	Tetrad	Scabrate	
32	Verbenaceae	Verbena officinalis	Irregular	Ellipse	Tricolpate	Scabrate	
33	Verbenaceae	Verbena tenuisecta	Spheroidal	Ellipse	Inaperturate	Scabrate	

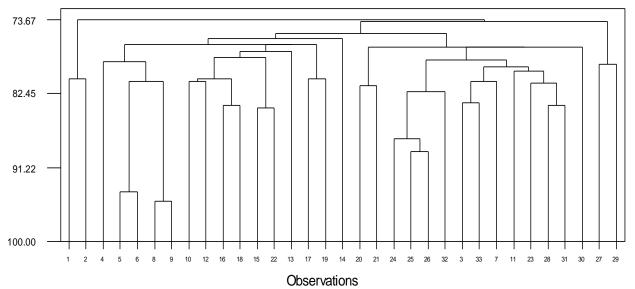


Fig. 2. Cluster analysis of qualitative morphological characteristics of different plant species from Salt Range of Pakistan. (1: Dicliptera bupleuroides, 2: Unknown, 3: Calotropis procera, 4: Asparagus adscendens, 5: Cotula hemisphaerica, 6: Aster laevis, 7: Trichodesma indicum, 8: Nasturtium officinale, 9: Sisymbrium irio, 10: Stellaria media, 11: Convolvulus arvensis, 12: Croton bonplandianus, 13: Euphorbia helioscopia, 14: Prosopis juliflora, 15: Verbascum thapsus, 16: Hypericum calycinum, 17: Clerodendrum fragrans, 18: Malvaviscus arborea, 19: Anagallis arvensis, 20: Oxalis corymbosa, 21: Bacopa monnieri, 22: Plantago lanceolata, 23: Plantago major, 24: Cynodon dactylon, 25: Dichanthium annulatum, 26: Panicum antidotale, 27: Polygonum plebejum, 28: Eichhornia crassipes, 29: Ranunculus muricatus, 30: Ranunculus sceleratus, 31: Mazus goodenifolius, 32: Verbena officinalis, 33: Verbena tenuisecta).

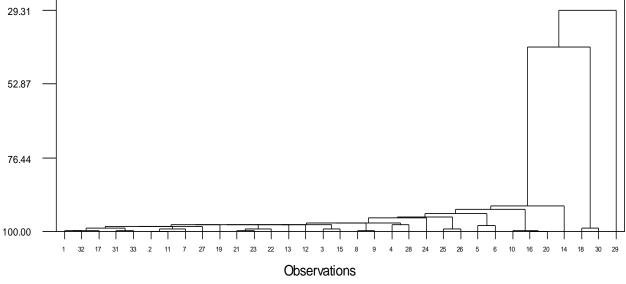


Fig. 3. Cluster analysis of quantitative morphological characteristics of different plant species from Salt Range of Pakistan. (1: Dicliptera bupleuroides, 2: Unknown, 3: Calotropis procera, 4: Asparagus adscendens, 5: Cotula hemisphaerica, 6: Aster laevis, 7: Trichodesma indicum, 8: Nasturtium officinale, 9: Sisymbrium irio, 10: Stellaria media, 11: Convolvulus arvensis, 12: Croton bonplandianus, 13: Euphorbia helioscopia, 14: Prosopis juliflora, 15: Verbascum thapsus, 16: Hypericum calycinum, 17: Clerodendrum fragrans, 18: Malvaviscus arborea, 19: Anagallis arvensis, 20: Oxalis corymbosa, 21: Bacopa monnieri, 22: Plantago lanceolata, 23: Plantago major, 24: Cynodon dactylon, 25: Dichanthium annulatum, 26: Panicum antidotale, 27: Polygonum plebejum, 28: Eichhornia crassipes, 29: Ranunculus muricatus, 30: Ranunculus sceleratus, 31: Mazus goodenifolius, 32: Verbena officinalis, 33: Verbena tenuisecta).

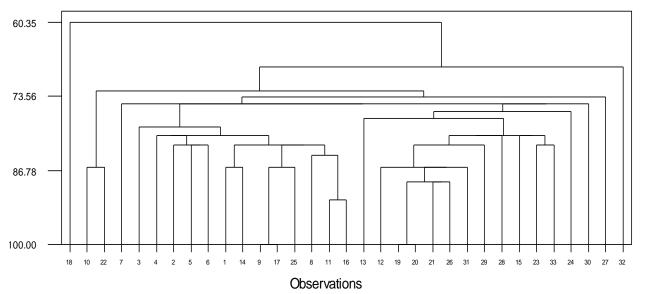


Fig. 4. Cluster analysis of qualitative palynological characteristics of different plant species from Salt Range of Pakistan (1: Dicliptera bupleuroides, 2: Unknown, 3: Calotropis procera, 4: Asparagus adscendens, 5: Cotula hemisphaerica, 6: Aster laevis, 7: Trichodesma indicum, 8: Nasturtium officinale, 9: Sisymbrium irio, 10: Stellaria media, 11: Convolvulus arvensis, 12: Croton bonplandianus, 13: Euphorbia helioscopia, 14: Prosopis juliflora, 15: Verbascum thapsus, 16: Hypericum calycinum, 17: Clerodendrum fragrans, 18: Malvaviscus arborea, 19: Anagallis arvensis, 20: Oxalis corymbosa, 21: Bacopa monnieri, 22: Plantago lanceolata, 23: Plantago major, 24: Cynodon dactylon, 25: Dichanthium annulatum, 26: Panicum antidotale, 27: Polygonum plebejum, 28: Eichhornia crassipes, 29: Ranunculus muricatus, 30: Ranunculus sceleratus, 31: Mazus goodenifolius, 32: Verbena officinalis, 33: Verbena tenuisecta).

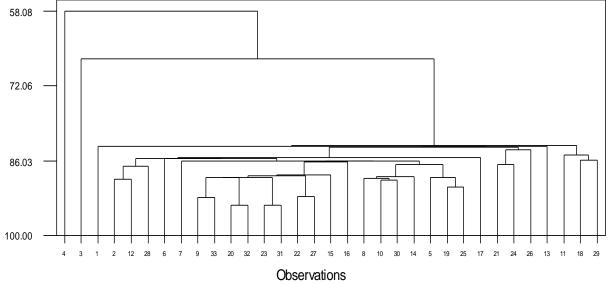


Fig. 5. Cluster analysis of quantitative palynological characteristics of different plant species from Salt Range of Pakistan (1: Dicliptera bupleuroides, 2: Unknown, 3: Calotropis procera, 4: Asparagus adscendens, 5: Cotula hemisphaerica, 6: Aster laevis, 7: Trichodesma indicum, 8: Nasturtium officinale, 9: Sisymbrium irio, 10: Stellaria media, 11: Convolvulus arvensis, 12: Croton bonplandianus, 13: Euphorbia helioscopia, 14: Prosopis juliflora, 15: Verbascum thapsus, 16: Hypericum calycinum, 17: Clerodendrum fragrans, 18: Malvaviscus arborea, 19: Anagallis arvensis, 20: Oxalis corymbosa, 21: Bacopa monnieri, 22: Plantago lanceolata, 23: Plantago major, 24: Cynodon dactylon, 25: Dichanthium annulatum, 26: Panicum antidotale, 27: Polygonum plebejum, 28: Eichhornia crassipes, 29: Ranunculus muricatus, 30: Ranunculus sceleratus, 31: Mazus goodenifolius, 32: Verbena officinalis, 33: Verbena tenuisecta).

2.3. Method of Pollen Study by Light Microscopy

Anthers from the specific flower separated with forceps, added 45% acetic acid (1-2 drops) and then crushed it with iron rod. Pollens were acetolysed by following procedure of Ahmad et al., (2008), who pursued Erdtman, (1952). Pollen stirred with needle on slide for equal spreading, then covers lip is put and transparent nail paint utilized for sealing slide corners. Labeled slides with the name of specific plant species with their location.

2.4. Pollen Parameters

Following parameters were studied under light microscope for pollen morphology.

2.5. Qualitative Characters

Shape in polar and equatorial view, type of pollen and sculpturing and presence of colpi

2.6. Quantitative Characters

Polar and equatorial diameter, P/E ratio, number, length and width of colpi and exine thickness

3. Results

Various qualitative features like pollen shape in equatorial and polar view, types of pollen and occurrence of colpi while quantitative features like equatorial and polar diameter, P/E ratio, number, length and width of colpi, exine thickness and pollen fertility was recorded. Then finally data was subjected to multivariate (cluster) analysis to found relationship between various genera and species (Fig. 2-Fig. 5).

In various species all quantitative and qualitative features were observed. It was recorded that qualitatively all species varied in their pollen shapes of equatorial and polar view, occurrence of colpi, exine sculpturing and pollen type are unique attributes of all plant species. And in the same way, quantitative attributes are also variate in equatorial and polar diameter, P/E ratio, number, length and width of colpi, exine thickness and pollen fertility. That features are vital in systematics studies.

Recent study revealed that pollen features of all species varied that helps to solve systematic problems. This study is important for identification of various species, and their division at family, generic and species level. It is recommended that molecular systematics can be reprocessed as an alternative methodology for identification of various plant species in future (Fig. 2-Fig. 9).

4. Discussion

Palynology is the study of spores and pollens and this study is also significant in this regard that pollen study can be utilized as recognizing marker in evolutionary record (Chambers et al., 2011), that focus on pollen size, shape symmetry and sources (Annamaria et al., 2011). In all species both qualitative and quantitative traits significantly varied and showed that these characters are vital in systematics and every species have its own pollen traits. Calotropis procera member of family Asclepiadaceae exhibit distinct pollen features called pollinium that is unique from other pollen characters. It is indicative features of this family that makes them unique and isolate from other families and this is vital taxonomically (Sreenath et al., 2012).

In Plantaginaceae family three species Plantago major, Bacopa monnieri and Plantago lanceolata were studied. In polar view star shaped, sub circular and spheroidal shaped were found respectively while in equatorial view first two species showed ellipsoidal shaped and heart shaped was found in P. lanceolata. They were of zonocolpate, dicolpate and monocolpate type respectively. While all species have foveolate sculpturing that is common point of this family. So exine ornamentation feature is vital to understand correlation between species and polar and equatorial shapes are important to differentiate these species within the genus. Sosa et al., (2011) results are similar to present findings.

Verbena officinalis and Verbena tenuisecta have asymmetrical and spheroidal formed pollen in polar view, tricolpate and inaperturate pollen types were found respectively. While both species have common feature i.e. ellipse shaped in equatorial view and scabrate sculpturing and pattern that is prominent feature of this family are coordinated with previous studies of Sousa et al. (2013).

Highest polar diameter (34.67µm) and equatorial diameter (46.0µm) was perceived in Dicliptera bupleuroides of family Acanthaceae. Perveen and Qaiser, (2010) detected Dicliptera bupleuroides pollen size varied from 58.11µm and 35.89µm in polar and equatorial views respectively. Lowest pollen size (9.17µm) was observed in Trichodesma indicum, member of Boraginaceae family in polar view, while member of this family showed 13.08-20.02µm pollen size in polar view, which observed by Mehrabian et al. (2012) in Onosma L. that much close to present study, and in equatorial view, lowest pollen size (10.1µm) was found in Verbascum thapsus of family Scrophulariaceae. While all other species have pollen size in-between these range.

Table 3. Quantitative characteristics regarding pollen of different plant species from Salt Range of Pakistan

Sr. No.	Family	Taxon	Polar diameter (µm)	Equatorial diameter (μm)	P/E	Exine thickness (µm)	Number of colpi	Length of colpi (µm)	Width of colpi (µm)	Pollen fertility%
1	Acanthaceae	Dicliptera bupleuroides	34.68	45.9	0.75	1.02	3	7.14	10.2	84
2	Apiaceae	Unknown	22.44	30.6	0.73	2.04	3	4.08	5.1	69
3	Asclepiadaceae	Calotropis procera								77
4	Asparagaceae	Asparagus adscendens	18.36	19.38	0.94	3.06				28
5	Asteraceae	Cotula hemisphaerica	20.4	28.56	0.71	1.02	3	3.06	6.12	87
6	Asteraceae	Aster laevis	30.6	26.52	1.15	2.55	1	10.2	10.2	93
7	Boraginaceae	Trichodesma indicum	9.18	15.3	0.6	1.02	5	4.08	10.2	84
8	Brassicaceae	Nasturtium officinale	14.28	20.4	0.7	0.51	3	6.12	12.24	89
9	Brassicaceae	Sisymbrium irio	17.34	16.32	1.06	1.53	1	3.06	6.12	82
10	Caryophyllaceae	Stellaria media	23.46	23.46	1	1.53	1	5.1	7.14	93
11	Convolvulaceae	Convolvulus arvensis	12.24	24.48	0.5	1.02	1	4.08	5.1	62.5
12	Euphorbiaceae	Croton bonplandianus	18.36	33.66	0.54	2.55	3	4.08	5.1	64
13	Euphorbiaceae	Euphorbia helioscopia	22.44	23.46	0.95	1.02				64
14	Fabaceae	Prosopis juliflora	17.34	23.46	0.73	1.02	2	11.2	15.3	90
15	Hypericaceae	Hypericum calycinum	25.5	18.36	1.38	1.02	1	4.08	5.1	75
16	Lamiaceae	Clerodendrum fragrans	13.26	32.64	0.4	1.02	1	4.08	5.1	82
17	Malvaceae	Malvaviscus arborea	17.34	20.4	0.85	1.53	2	5.1	7.14	55
18	Myrsinaceae	Anagallis arvensis	24.48	27.54	0.88	2.5	1	5.1	7.14	82
19	Oxalidaceae	Oxalis corymbosa	12.24	22.44	0.54	1.02	1	5.1	7.14	82
20	Plantaginaceae	Bacopa monnieri	25.5	41.82	0.6	1.02	2	4.08	7.14	87
21	Plantaginaceae	Plantago lanceolata	13.26	15.3	0.86	0.51	1	5.1	8.16	76
22	Plantaginaceae	Plantago major	15.3	22.44	0.68	1.5	4	5.1	8.16	73
23	Poaceae	Cynodon dactylon	26.52	35.7	0.7	1.02	3	5.1	3.06	92
24	Poaceae	Dichanthium annulatum	29.58	24.48	1.2	2.5	2	5.1	7.14	81
25	Poaceae	Panicum antidotale	15.3	42.84	0.3	3.06	2	3.06	5.1	89
26	Polygonaceae	Polygonum plebejum	16.32	16.32	1	1.53	1	7.14	10.2	74
27	Pontederiaceae	Eichhornia crassipes	28.56	26.52	1.07	1.53	1	5.1	9.18	68
28	Ranunculaceae	Ranunculus muricatus	18.36	15.3	1.2	1.02	3	12.24	9.18	58
29	Ranunculaceae	Ranunculus sceleratus	17.34	22.44	0.77	2.04	2	7.14	9.18	94
30	Scrophulariaceae	Mazus goodenifolius	18.36	23.46	0.78	2.04	3	4.08	7.14	74
31	Scrophulariaceae	Verbascum thapsus	23.46	10.2	2.3	1.02	4	4.08	6.12	
32	Verbenaceae	Verbena officinalis	14.28	21.42	0.6	1.53	3	6.12	7.14	80
33	Verbenaceae	Verbena tenuisecta	17.34	13.26	1.3	1.53	1	5.1	7.14	85

The current research exposed the maximum P/E (2.31) was found in Verbascum thapsus of family Scrophulariaceae. Minimum P/E (0.29) ratio was observed in Panicum antidotale in Poaceae family, Ahmad (2009) stated P/E ratio 1.0 in Panicum antidotale and this feature is very vital.

Exine thickness seemed maximum (3.06 um) in Panicum antidotale that do not relate with the Ahmad (2009), they found Exine thickness (0.8 µm) in Panicum antidotale. Minimum exine thickness (0.51 um) was detected in two species Nasturtium officinale and Plantago lanceolata species of family Brassicaceae and Plantaginaceae respectively, Keshavarzi et al. (2012) reported exine thickness 1.63 um ingenus Clypeola of Brassicaceae family while in Plantaginaceae family exine thickness 1.0 µm was detected in Stemodia genus.

5. Conclusion

The present research showed all different species are unique in their pollen characters that makes them discriminated from other species. For species differentiation and correct identification only morphological studies not enough are then palynological studies exine features i.e., ornamentation and sculpturing proved to be valuable at generic and species level are vital in systematics that states correct and accurate differentiation between relevant species. Every plant species has their own unique pollen features that can be further merged to extract generic and family level pollen traits.

List of Abbreviations: P: polar, E: equatorial

Competing Interest Statement: All the authors declare that they have no competing interest.

Author's Contribution: F. Ahmad designed the experiment. A. Zahoor conducted the experiment under the supervision of F.Ahmad. M. Naseer performed sectioning. N. Irum helps in collection of plant material. M. hameed. performed statistical analysis Finally, A. Zahoor approved the current version of manuscript. All the authors read and approved the final manuscript.

Acknowledgments: The present work was part of M.Phil research and conducted without any source of funding.

References

Ahmad, F. 2009. Taxonomic studies of grasses of Salt Range of Pakistan. Ph.D Thesis Quaid-i-Azam University Islamabad, Pakistan.

- Ahmad, F., M. A. Khan, M. Ahmad, M. Zafar, T. Mahmood, A. Jabeen and S. K. Marwat. 2010. Ethnomedicinal uses of grasses in Salt Range region of Northern Pakistan. J. Med. Plants Res. 4(5): 362-
- Ahmad, I., M.S.A. Ahmad, M. Hameed, M. Hussain, M.Y. Ashraf, F. Ahmad and H. Malik. 2012. Status of plant diversity in the Soone Valley, Salt Range, Pakistan. Pak. J. Bot. 44: 59-62.
- Ahmad, M. M.A. Khan, A. Hussain, M. Zafar and S. Sultana. 2008. Chemotaxonomic standardization of herbal drugs: Milk thistle and Globe thistle. Asian J. Chem. 20: 1443-1453.
- Annamaria, P. S. Ildiko, R. Ladislau and H. Ana. 2011. Palinological study of Ambrosia artemisifolia L. J. AnaleleUniver. din Oradea, FasciculaProtectiaMediului, 16: 137-142.
- Chambers, F. M. B. V. Geel and M. V. D. Lindens. 2011. Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires Peat, 7: 1-14.
- Chung, K.S., W.J. Elisens and J.J. Skvarla. 2010. Pollen morphology and its phylogenetic significance in tribe Sanguisorbeae (Rosaceae). Plant. Syst. Evol. 285(3-4): 139-148.
- Devarkar, V.D. 2011. Baseline Inventory Angiospermic pollen diversity in Osmanabad district (MS), India. Biosci. Discovery. 2(3): 288-293.
- Erdtman, G. 1952. Pollen morphology and plant taxonomy of Angiosperms (An introduction to Palynology 1). Almqvist and Wiksell, Stockholm. Chronica Botanica Co.Waltham, Mass. U.S.A. p. 1-539.
- Keshavarzi, M., S. Abassiani and M. Sheidai. 2012. Pollen morphology of the genus Clypeola (Brassicaceae) in Iran. J. Phytol. Balcan. 18(1): 17-
- Khan, K.Y., M.A. Khan, G.M. Shah, M. Ahmad, M. Munir, I. Hussain, H. Fazal, P. Mazari, B. Ali, N. S.H. Bokhari. Palynomorphological characterization of some species of Ficus L. from Pakistan. J. Med. Plants. Res. 5(20): 5067-5070.
- Khan, M.A. and C.A. Stace. 1999. Breeding relationships in the genus Brachypodium (Poaceae, Pooideae). Nord. J. Bot. 19(3): 257-269.
- Mehrabian, A.R., M. Sheidau, Z. Noormohammadi, V. Mozafarian and Y. Asrei. 2012. Palynological diversity in the genus Onosma L. (Boraginaceae) of Iran. J. Ann. Biol. Res. 3(8): 3885-3893.
- Nadeem, M., Z.K. Shinwari and M. Qaiser. 2013. Screening of folk remedies by genus Artemisia based on ethnomedicinal survey and traditional knowledge of native communities of Pakistan. Pak. J. Bot. 45(1): 111-117.

Nawaz, T., M. Hameed, M. Ashraf, F. Ahmad, M.S.A. Ahmad, M. Hussain, I. Ahmad, A. Younis and K.S. Ahmad. 2012. Diversity and conservation status of economically important flora of the Salt Range, Pakistan. Pak. J. Bot. 44: 203-211.

Perveen, A. and M. Qaiser. 2010. Pollen flora of Pakistan-LXVII: Acanthaceae. Pak. J. Bot. 42: 175-191.

Sosa, M.D.L.M., A.F. Panseri and C.R. Salgado. 2011. Pollen morphology of eight species of *Stemodia*

(Plantaginaceae) from South America. J. AASP palynological society. 36: 1-9.

Sousa, S.M.P. M. O. Pirre, G. A. Torres, L. C. Davide and L. F. Viccini. 2013. Relationship between pollen morphology and chromosome numbers in Brazilian species of Lippia L. (Verbenaceae). An. Braz. Acad. Sci. 85(1): 147-157.

Sreenath, K. P. T. M. Ramakrishna and T. P. Babu. 2012. Perspective on polinial apparatus & carriers of Asclepiadaceae *sensu lato*. Global J. Bio-Sci. Biotechnol. 1:45-53.

INVITATION TO SUBMIT ARTICLES:

Journal of Environmental and Agricultural Sciences (JEAS) (ISSN: 2313-8629) is an Open Access, Peer Reviewed online Journal, which publishes Research articles, Short Communications, Review articles, Methodology articles, Technical Reports in all areas of **Biology, Plant, Animal, Environmental and Agricultural** Sciences. For manuscript submission and information contact editor JEAS at editor.jeas@outlook.com, Whatsapp:+92-333-6304269.

Online Submission System http://www.jeas.agropublishers.com

Follow JEAS at Facebook: https://www.facebook.com/journal.environmental.agricultural.sciences

Join LinkedIn Group: https://www.linkedin.com/groups/8388694