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Abstract: CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat) is one of the 

most potent methods to genome editing for different organisms. As part of the adaptive immune 

system of bacteria, CRISPR/Cas9 and its modified versions are used globally in genome 

engineering to stimulate or suppress the expression of the genes. CRISPR/Cas9 also promises to 

revolutionize cancer research as it is an efficient technique to get the insights of tumorigenesis, 

identify developmental drug targets, and arm cell therapies. Currently used applications of 

CRISPR/Cas9 technology for cancer therapy are reviewed here. In this review, we have enlisted 

and discussed the impact of CRISPR/Cas9 in creating organoid and mouse models of cancer. 

Moreover, this review also describes CRISPR Cas9 versatility, in vivo delivery system, drug 

efficacy, different CRISPR systems, in vivo genome editing, and target discovery. 

Keywords: Versatility, cancer model, target delivery, industrial perspectives, innate immunity, 

RNA interference, gene therapy. 
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1. Introduction 

With the ever-increasing incident rate, cancer is 

one of the leading causes of disease-affiliated 

mortality and global health burden (Alderton, 2020; 

Biswas and Acharyya. 2020. Rebbeck, 2020; Torre et 

al., 2012). Scientific advancements and progress have 

ensured the prevention, diagnosis, and treatment of 

different cancer types, resulting in extended survival 

and cure (Lam et al., 2019; Stoffel and Carethers. 

2020; Wang et al., 2019). A central pillar in cancer 

therapy is the improved understanding of underlying 

tumour and cell biology. This vital knowledge has led 

to the discovery of small molecules and primary 

antibody-targeting proteins of oncogenic signalling 

directions (Kapałczyńska et al., 2018; Larijani et al., 

2019; Tower et al., 2020), including imatinib based 

targeting of BCR-ABL (breakpoint cluster region, 

Abelson murine leukaemia) in chronic myeloid 

leukaemia or EGFR (epidermal growth factor 

receptor) by particular antibodies in colorectal cancer 

(Cui et al., 2019; Kantarjian et al., 2002; Pottier et al., 

2020). Although such agents have improved the 

survival rate of respective cancer entities. However, 

for some types of cancer, treatment and cure opinions 

are within range, and modes of action are poorly 

detected. Thus, the scientific community considered 

to characterize the genetic flowchart of cancer and 

acquire a keen understanding of its role in 

carcinogenesis and its treatment (Cunningham et al., 

2004). Genetic alterations, either particular to a 

specific cancer type or common to different cancer 

classes, are revealed through large-scale sequencing 

projects. Although most of the genetic variations of 

carcinogenic genomes are well-studied, quite limited 

is known about the function of numerous mutated 

genes (Garraway et al., 2013).  

The conventional techniques for a detailed and 

systematic functional analysis of normal or mutant 

genes are tedious and difficult. Phenotypic variation 

caused by mutations is either due to random 

mutagenesis or RNAi associated indirect perturbation 

of transcripts. Discovery and formation of engineered 
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nucleases such as zinc-finger nucleases, also known 

as TALENs (transcription activator-like effector 

nucleases), enabled the man to think of directly 

targeting and modifying the genomic sequence 

(Prashant, 2013). Lately, DNA engineering showed 

immensely changed due to the development of 

CRISPR/Cas9 (CRISPR-associated protein 9)   

technologies. Since 2013, when it was used for the 

first time as a tool for editing genes in mammals, 

CRISPR/Cas9 has significantly developed and spread, 

allowing the amendments in the genome sequences, 

the introduction of epigenetics, and transcriptional 

alterations (Cong et al., 2013). This review is an 

effort to elaborate on how CRISPR/Cas9 unfolds 

more horizons for cancer research and its applications 

as an efficient method, especially in functional cancer 

genes. Furthermore, we outlined the potential 

implications of CRISPR/Cas9 to investigate the non-

coding carcinogenic genes and try to comprehend 

CRISPR/Cas9 engineered novel in-vivo cancer 

models, along with different CRISPR systems. 

CRISPR/Cas9 associated gene knockout in Mia 

PaCa2 cell lines caused the excretion of extracellular 

vesicles (Pessolano et al., 2018; Belvedere et al., 

2016). The knockout of GALNT3 (polypeptide N-

acetyl galactosaminyl transferase 3) in Capan1 cell 

lines observed that some tumorspheres appeared, 

lacking the ability of motility and regeneration 

(Barkeer et al., 2018). In another investigation, 

SphK1 (sphingosine kinase1) gene knockout caused 

enhanced proliferation and movement (Yuza et al., 

2018). Some researchers recently used the same 

strategy to knockout particular genes in the pancreatic 

cancer cell lines to analyze various phenotypes 

(Abdalla et al., 2019; Hwang et al., 2019). 

1.1. CRISPR-Cas9 

Clustered regularly interspaced short palindromic 

repeats (CRISPR) express DNA sequences in bacteria 

and some other microbial sources. CRISPR-Cas9 is a 

technique that includes the addition or deletion of 

genes, which made extensive development due to its 

cost, efficiency, easiness and speed 

(NimkarandAnand. 2020; Sioud, 2020). The genes 

which are associated next to these sequences are 

called CRISPR-associated genes. These genes 

develop immunity against viruses. There are three 

primary functions of the CRISPR system: it identifies, 

cuts, and destroys external DNA. Among the five 

CRISPR systems, CRISPR-Cas9 is widely discussed. 

Scientists improved CRISPR-Cas9 to make it useful 

for the editing of plants, animals, and 

microorganism’s genome (John Travis, 2015). 

CRISPR/Cas9 is also used to discover gene function 

in cancer initiation and propagation, gene function in 

uncharacterized cells and animal models (Ma et al., 

2017; Li et al., 2019). 

1.2. Gene Editing  

There are two main conventional techniques in 

which radiation and chemicals were used for gene 

alteration for a specific purpose.  

In the 1970s, researchers were able to express 

foreign genes inserted in an organism’s genome from 

discovering recombinant DNA technology. CRISPR-

CAS9 makes it possible to create desired changes, 

such as insertion, truncation, and modification in an 

organism’s genome. Traditionally, gene editing 

technologies were able to insert, delete, or modify a 

single gene; however, CRISPR-Cas9 can perform 

genome editing, dealing with multiple genes 

simultaneously (Makarova, 2015). This gene-editing 

tool is widely used in cancer biology to explore new 

insights about all types of cancer. In a research study 

on pancreatic cancer C1GALT1 (core 1 synthase 

glycoprotein-N- acetyl galactosamine 3-beta-

galactosyltransferase1) gene was taken off with the 

help of CRISPR/Cas9 tool where cells observed to 

show enhanced growth, tumorigenesis, movement, 

with the expression of Tn and sTn (Chugh et al., 

2018). 

1.3. CRISPR-Cas9 Technology mechanism  

CRISPR-Cas9 consists of guide RNA and an 

enzyme that cleaves the DNA. The function of guide 

RNA targets a specific site on DNA molecule to 

identify those regions for the break down by the Cas9 

enzyme. These broken parts are truncated, inserted, 

modified, or edited by DNA sequences, and 

subsequently, these remodelled ends are ligated 

together. The general mode of functioning of the 

CRISPR-Cas9 technique is given in Fig.1. Scientists 

can design guide RNA following any segment of 

DNA sequence, and this ability has diversified the 

applications of CRISPR-Cas9 in various fields by 

using microbial, animal, and plant’s genome. 

However, CRISPR-Cas9 may alter specific cell 

function by knowing the desired gene sequences 

(Charpentier et al., 2013).  
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Fig.1. Mechanism of action of CRISPR Cas9 tool 

1.4. A Versatile tool for genome remodelling  

Clustered regularly interspersed short palindromic 

repeats (CRISPR) was the first time reported, in the 

late 1980s, during research on Escherichia coli 

genome (Ishino et al., 1987). Among these 

palindromic repeats, short spacers (21–72 base pairs 

(bp)) reported originating from extrachromosomal 

DNA. Those short spacers may potentially impede 

plasmid transformation and bacteriophage infection 

(Barrangou and Horvath. 2017; Jiang and Doudna. 

2017).  
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Table 1. Various vectors and in vivo methods to deliver specific genes encoding Cas9 and sgRNAs to the 

desired cell 

             Cas9 system delivery                     sgRNA delivery                   Invivo delivery 

 

 

 

Encapsulat

ion in viral 

particle 

Lentivirus (Blasco et 

al., 2014) 

 

 

 

Encapsulation 

in viral 

particle 

Lentivirus 

 (Sanchez-Rivera et 

al., 2014 

 

 

 

 

 

 

Injection 

of virus 

or 

plasmid 

Retrograde pancreatic 

ductal injection (Chiou et 

al., 2015) 

Adeno-associated 

virus (AAV) 

 Adeno-associated 

virus (AAV) (Platt 

et al., 2014) 

Hydrodynamic tail-vein 

injection (Xue et al., 2014) 

Adenovirus 

(Maddalo et al., 

2014 

Adenovirus 

 (Maddalo et al., 

2014) 

Intratracheal injection 

(Platt et al., 2014) 

Plasmid 

DNA 

Plasmid DNA (Xue 

et al., 2014) 

Plasmid DNA Plasmid DNA 

 (Li et al., 2015) 

Stereotactic injection 

(Zuckermann et al., 2015) 

 

 

Inducible 

expression 

in the 

germline 

Doxycycline-

inducible expression 

(Dow et al., 2015) 

 

 

Expression in 

the germline 

Constitutive 

expression in the 

germline 

 (Dow et al., 2015) 

 

Intraductal injection 

(Annunziato et al., 2016 

Cre-inducible 

expression (Chiou et 

al., 2015) 

Transfect

ion of 

plasmid 

Plasmid electroporation 

Maresch et al., 2016) 

Doxycyc

line 

treatment 

Doxycycline-induced gene 

expression (Dow et al., 

2015) 

 

The purpose of small palindromic sequences was 

not yet clear. The investigations were expanded to 

detect the function of CRISPR and Cas genes 

associated with adaptive immunity towards outsider 

DNA. Type II system is a subgroup of CRISPR 

systems that depends on a Cas based protein to cleave 

the particular DNA arrangement. For the first time in 

2013, type II system based Cas protein derived from 

Streptococcus pyogenes applied for DNA lysis in 

animal cells guided from RNA (Cong et al., 2013; 

Mali et al., 2013).  Before DNA lysis conformation of 

Cas9 nuclease alters with of sg RNA binding, it is 

oriented into its specific sequence region (Jinek et al., 

2012). 

1.5. Different CRISPR systems  

Many gene delivery systems for gene encoding 

have been reported, such as Cas9 system delivery, 

sgRNA delivery and in vivo delivery (Table 1). 

CRISPR has two main classes: Class 1 (Type I and 

type III CRISPR systems, identified in Archaea) and 

Class 2 (Type II, IV, V, and VI CRISPR systems). 

Among these various CRISPR/Cas systems of 

genome targeting, the most commonly used is the 

CRISPR-Cas9 type II system due to its simple NGG 

PAM sequence of S. pyogenes (Makarova et al., 

2011). More than ten CRISPR/Cas proteins were 

identified recently, like Cpf1 protein from 

Acidaminococcus sp and Lachnospiraceae bacterium 

(Yamano et al., 2016). The Cpf1 needs only one sg 

RNA (single guide RNA), while Cas9 requires two 

RNAs. Cas9 is a naturally occurring large protein that 

may create packaging and delivery issues through 

adeno associated viruses (Fonfara et al., 2016). 

1.6. Target discovery using CRISPR screens 

For the development of new targets in cancer 

treatment, these CRISPR screens are a potent 

genomic tool. A cell population of different genetic 

makeup has to be prepared for the screening via 

CRISPR/Cas9. This CRISPR/Cas9 screening method 

has many steps in which the first step is the selection 

of proficient sgRNAs (single strand guided RNAs) 

for each target gene. Algorithms and bioinformatics 

tools are used to predict an efficient sgRNAs applied 

for a specific target gene. After the synthesis of the 

sgRNA library of oligonucleotides, the lentiviral 

plasmid is cloned to generate viral particles (Meier et 

al., 2017). These viruses are subjected to infect Cas9-

expressing cells with a slow progression of the 

infection. From this process, each cell gets a 

particular gene knockout and a discrete sgRNA 

cassette. Afterwards, this library of editing cells is 

placed in a suitable culture medium for a specified 

duration. Then cells in the culture are harvested for 

DNA extraction, amplification/extension and 

sequencing of the sgRNA genes to detect cells having 

specific gene knockouts (Heigwer et al., 2016). This 
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simple CRISPR screen procedure was modified by 

applying various Cas9 variants to get functional 

screens and evaluate drug-gene interaction. This 

technique is famous for gene expression with viral 

vectors into the host cell, along with its complicated 

and time-consuming procedure (Sharma et al., 2019; 

Watanabe et al., 2019). 

1.7. Identification and investigation over non-

coding regions 

Genomic DNA having regions of non-proteins 

coding sequences may consist of enhancers or 

regulatory elements, or non-coding RNAs contain a 

vast majority are of the human genome. Most of these 

kinds of non-coding regions are functionally 

uncharacterized due to the unavailability of 

appropriate tools and techniques for experimental 

performance. In cancer cells, the non-coding RNAs 

expression is dysregulated or abnormally regulated, 

while the oncogenes transcription is controlled by the 

enhancer elements present in the near or distant 

regions (Datlinger et al., 2017). Thus the 

comprehensive knowledge regarding the non-coding 

sequences may give a deep understanding of the 

cancerous cells. CRISPR Cas9 is identified as the 

potential tools for the identification and interrogation 

of the non-coding regions. For the similar purpose, 

the three cancer-linked genes named as NF1 

(neurofibromatosis type 1), NF2 (neurofibromatosis 

type 2) and CUL3 (cullin-3) genes are screened with 

the help of CRISPR Cas9 that targets the 700 kb 

genomic sequence that surrounds the open reading 

frame of the respective genes (Sanjana et al., 2016). 

The direct knockout of any individual gene linked to 

the resistance against the Vemurafenib, a BRAF 

inhibitor. Furthermore, the downregulation of the 

gene may phenocopy the disruption of enhancer 

elements that can achieve drug resistance. Moreover, 

the alterations in the specific site of the genome 

upstream and downstream of  cullin-3 genes change 

the dependence of the particular transcription factors 

by reducing the CUL3 gene product. CRISPR CAS 

system is used to identify the functional enhancers of 

TP53 targeted genes (Korkmaz et al., 2016).  

The systematic dissection of long non-coding 

RNAs (lncRNA’s) in cancerous cell screening 

approaches using the three Cas9 variants was 

performed. Further, Liu et al. (2017) utilized the 

CRISPRi to screen 16401 lncRNA arrays in the six 

cell lines for their cell capabilities (Liu et al., 2017). 

In another similar study, the CRISPRa was used for 

the lncRNAs identification, which mediates the 

resistance against the BRAF inhibitions by 

transcriptional activation (Joung et al., 2017). Many 

genomic arrays came to know; however, the 

phenotypic response was caused by the activation of 

the neighbouring proteins coding sequences. These 

results opened the new chapter of limitations for the 

use of the CRISPRa against lncRNAs.  

As many lncRNAs are located into the gene 

coding sequences or have bidirectional promoters, it 

is infrequent to target the lncRNAs while not 

affecting the neighbouring genes coding regions 

(Goyal et al., 2016). Thus, the investigation upon the 

CRISPR Cas9 technique, which is the most suitable 

for investigation of lncRNA function is the subject of 

further studies. In cellular growth, a total of 499 

lncRNAs are identified, which are essential for 

proliferation. Furthermore, the vast majority of the 

respective lncRNAs are required as cell line-specific 

manners, which expresses that the lncRNAs 

expression varies significantly in the cancer spread in 

different tissues (Zhan et al., 2019). 

1.8. Designing of organoid cancer models  

 Organoids derived from the adult stem cells are 

becoming popular in the studies of in vitro modelling 

of diseased and intact human epithelia (Clevers et al., 

2016). Stem cells can be isolated from multiple types 

of adult tissues and cultivated in the three 

dimensional culturing. These stem cell proliferation, 

differentiation and formulation into organoids in 

culture dishes are done by the stimulators, which are 

tissue-dependent growth factors. The subjective 

possibility of culturing the cancerous and healthy 

cells describes the study of the tumour progression in 

vitro conditions. Schwank et al. (2013) firstly used 

the CRISPR Cas9 system in the intestinal organoids 

derived from the mouse body (Schwank et al., 2013). 

Two years later of this development the two separate 

groups originate the transformation of cancerous cells 

from the human colon organoids with the use of 

adenoma-carcinoma sequences of the cancerous cells 

of colons with the help of CRISPR Cas9 system 

(Drost et al., 2015; Matano et al., 2015).  

Drost et al. (2017) performed the deletion of DNA 

repair genes in the colon organoids to model the 

mismatch repair-deficient colorectal cancerous cells. 

This helps in the identification of the mutational 

signature that was present in the cohort’s patients of 

similar defects. Via coupling the scalable culturing 

and almost intact physiology, organoids are viable for 

validating findings from the other models in the ex-
vivo system (Tao et al., 2016). Furthermore, the new 

insights can achieve with the help of patents derived 
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from material data for the functional investigation of 

compounds or CRISPR screens (Driehuis et al., 2016). 

1.9. CRISPR Cas9 in vivo delivery system  

An efficient delivery system is required for the 

delivery of the Cas9 as well as sgRNA to the targeted 

cell for applying the CRISPR Cas9 in vivo 

environment. Moreover, the methodology must have 

high efficiency of genome editing with a low 

immunogenic effect and capable of directing the 

sgRNA/Cas9 towards the selected cell or organ type. 

The first genome editing technique in the mammalian 

cell was based on the plasmid associated expression 

of the sgRNA and Cas9 (Cong et al., 2013). In small 

organisms like rats, this process is useful for the In 

vivo delivery and used as a respective vector may be 

distributed to tissues with hydrodynamic injections or 

electroporation (Xue et al., 2014; Maresch et al., 

2016). However, for this kind of system, the 

editing/modifying proficiency is quite low, and the 

control over the Cas9 activity is inferior. For further 

improvement in the sgRNA/Cas9 delivery system, 

several viral or non-viral techniques have been 

originated. Adeno-associated viruses (or AAVs) are 

potential tools for the in vivo delivery system because 

it serologically compatible, non-integrating, and have 

higher transduction efficiency concerning larger 

fractions of the human population (Luo et al., 2015).  

For genome editing, the adeno-associated viruses 

system may directly be delivered to the targeted 

organs or systemically administered. Studies 

performed by Wu et al. explained that sub-retinal 

injections of AAVs could not efficiently edit the 

NRL(neural retina-specific leucine zipper)  gene in 

the post-mitotic retinal photo-receptors (Yu et al., 

2017). Furthermore, with a similar method, the direct 

injections of adeno-associated viruses in the mouse 

striatum can locally modify the huntingtin gene 

(Yang et al., 2017). For further applications of the 

adeno-associated viruses, the tissue-based genome 

editing is successively performed using the specific 

AAVs serotype tissue-specific promoter for the Cas9. 

This technique has been effectively used against the 

dystrophin gene in the muscle tissues (Bengtsson et 

al., 2017) and the editing of the ornithine trans-carb-

amylase gene in the murine liver (Yang et al., 2016). 

After the particular application, the frequency of 

editing ranged from 10% to 70%, which is enough for 

measuring phenotypic improvements in the hereditary 

disease model of mice (Yang et al., 2016).  

The recent studies described that Cas9 mRNA and 

sgRNA’s loading over the lipid nanoparticles and the 

delivery towards the murine liver contributes the 

higher efficiency (Jiang et al., 2017; Miller et al., 

2017). Moreover, the modified nanoparticles can 

directly repair the homology. After the intramuscular 

injection of nanoparticle based-medicine, carrying the 

donor template sequence, the repair of dystrophin 

genetic makeup is observed. However, reported 

efficiency is quite low (Lee et al., 2017).  

1.10. Disease models for drug efficacy 

Direct administration of a disease-specific drug or 

medicine in human being before check-in model 

animal, is not ethical and have social concerns. 

Several existing models do not match the 

abnormalities occurred in patients of various diseases. 

However, it will be costly and time-consuming to 

meet resembled models with the same conditions of 

human disease. Currently, CRISPR/Cas9 is widely 

used to treat anomalies by altering cancer cell lines 

with good efficacy than conventional procedures, 

which are less efficient and expensive. A good 

CRISPR/Cas9 example in which an ID8 (a rat ovarian 

cancer model) cell line, was genetically edited for the 

inhibition of BRCA2 (breast cancer type 2) and TP53 

that caused a rise in the sensitivity to PARP  (Poly 

ADP ribose polymerase) inhibition (Walton et al., 

2016). This rapidly emerging CRISPR/Cas9 speeded 

up detecting and validating novel drug targets in a 

specific disease.  

1.11. In vivo genome editing  

In vivo CRISPR technologies differ from other in-

vitro oriented screening methods considering the 

stronger competition between transplanted cells for 

growth and survival and several other factors of the 

microenvironment, such as the host immune system. 

Chen et al., (2013) completed experiments to 

recognize genes stimulated development and 

metastasis through the application of genome-wide 

CRISPR and keenly studied the non-functional 

cancerous cells in murine. They transduced a sgRNA 

library into non-metastatic carcinogenic lung cell 

lines and transplanted them subcutaneously into mice 

models. Local tumours were formed by the implanted 

cells, and lung cells were isolated and evaluated the 

increased presence of certain single gRNAs. This 

particular method helped identify stimulators of 

cancerous cell progression and metastasis(Chen et al., 

2013). Besides this experiment, a current attempt was 

made by Roper et al. (2017) that depicted the 

possibility of CRISPR based orthotopic inserting of 

modified colon organoids. It took a few weeks for 

APC (adenomatous polyposis coli) mutant organoids 
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to efficiently engraft the colon. Xue et al. (2014) 

provided the necessary evidence for the first time to 

support the hypothesis that in vivo gene editing can 

conclude in tumour formation. They transfected a 

plasmid having genes and encoding for Cas9 and 

sgRNAs against PTEN (phosphatase tensin homolog) 

and TP53 (tumour protein) in liver cells by using tail 

vein injection. The transfection culminated in the 

progression of cancerous cells in the murine liver. 

Afterwards, a similar method was adopted to inject 

Cas9 encoded specific vectors that targeted a group of 

10 genes, leading to the formation of 

cholangiocellular and myeloma in the animal model 

having KRAS gene (Ki-ras2 Kirsten rat sarcoma viral 

oncogene homolog) oncogenic background (Weber et 

al., 2015). Similarly, plasmids encoding sgRNA are 

electroporated into the mice’s pancreatic cells with a 

background of oncogenic KRAS(Kirsten rat sarcoma), 

which causes the formation of tumours (Maresch et 

al., 2016). Another approach concluded with the 

glioblastoma development in mice models for six 

months by applying electroporation of the developing 

prosencephalon with different tumour suppressors 

targeting sgRNAs. However, it should be considered 

that multiplexed sgRNA targeting can culminate in 

unwanted chromosomal translocations (Maresch et al., 

2016). Introducing single gRNAs by an AAVs 

provides an alternate for such kind of trials which are 

transfection based. Work of Platt et al. (2014) 

supported this hypothesis as they introduced AAV, 

encoding three important Cas9 expressing genes in 

the lungs. Those genes included single gRNAs 

directing LKB1, TP53, and KRAS in synergistic 

combination and a contributor template for  KRAS 

(Platt et al., 2014). In conclusion, macroscopic lung 

cancer development was observed. Specifically 

focused AAV-mediated CRISPR genomic library was 

introduced, after the formation of a visible tumour, 

into the brain cells of inducible Cas9 expressing mice 

and targeted sequenced genetic loci (Chow et al., 

2017). Frequently mutated sgRNA targeting genes in 

human glioblastoma also showed extracted lesions 

enrichment. Moreover, identification of co-occurring 

sgRNAs suggested a group of combined mutations in 

glioblastoma. Finally, in vivo and ex vivo 

administration of single gRNAs and CRISPR-Cas9 

may be used to discover new insights into cancer-

associated genes’ role by exploring the property of 

their loss-of-function 

 

 

. 

2. Environmental issues and cancer 

2.1 Cancer and environmental risk factors 

Arsenic is a semi-metal chemical element with 

various allotropes. Its compounds are very harmful 

that are used in insecticides, pesticides, and 

herbicides (Tokunaga, 2007). It is known to cause 

cancer of lungs, skin, liver, bladder and kidney 

(Abernathy et al., 2003; Rossman et al., 2004; 

Navarro et al., 2007). Therefore, due to arsenic 

compounds, millions of people are at cancer and other 

diseases risk (NRC, 2001; Meliker 2007).  

There is a large number of industrial synthetic 

chemicals that exist in the environment. The amount 

of these hazardous chemicals considerably increased 

since the last few decades with the development of 

science and technology. Pesticides, air pollutants, and 

lead are among these toxic agents and are serious 

threats for humans, aquatic, and wildlife. Recently 

pesticides, cosmetics, and phthalates were detected in 

surface water and also found in the tissues of fish and 

shrimps. Some of these toxicants activate estrogen 

receptors and trigger mammary cell proliferation to 

initiate the development of the tumour.  

Moreover, some heavy metals also have endocrine 

disturbing chemicals (EDCs) such as cadmium (Cd), 

which cause breast cancer (Sweeney et al., 2015; 

Luevano et al., 2014). Many compounds originate 

from factories and households such as alkylphenols 

used in detergents, organochlorides used in 

insecticides and bisphenols, octylphenol, and 

nonylphenol used in plasticizer’s synthesis. The 

EDCs association of the particular molecules was 

evaluated in the human and aquatic community 

(Wang et al., 2017). 

2.2. Cancer and pollution 

The air quality index is used for the measurement 

of air pollution. This index can measure six air 

pollutants such as nitrogen dioxide, sulfur dioxide, 

carbon monoxide, ozone, suspended particulate 

smaller than 2.5 μm in aerodynamic diameter, and 

suspended particulate smaller than 10 μm in 

aerodynamic diameter (Villeneuve et al., 2014; Hart 

et al., 2015). 

Air pollution is the primary causative agent for the 

occurrence of cancer and other diseases. Smoking 

poses a high risk of lung cancer and other respiratory 

diseases (WHO, 2016).  Most of the epidemiological 

studies evaluated the effect of different types of cigar, 
cigarette, pipe, environmental tobacco smoking on 

lungs in which cigarette smoking is the vital threat for 
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bladder cancer (Stewart et al., 2012). WHO 2014 

declared diesel engine exhaust as a carcinogen due to 

adequate evidence for lung cancer and urinary 

bladder cancer. The particulate matter in outdoor 

pollution was classified as a carcinogen for lung and 

urinary bladder cancer after general population study 

and environmental levels of exposure (WHO 2016). 

World Health Organization in 2018 organized a 

conference on air pollution and set a target to save 70 

lac people worldwide from going to death by 

atmospheric pollution (WHO 2018). 

Several types of cancer, especially lung cancer, 

urinary bladder cancer, and breast cancer, occur 

globally due to ambient air pollution (AAP). More 

than 2 million cases of lung and breast cancer were 

diagnosed, in 2018, to contribute ~11.6% of overall 

cancer prevalence. Among all types of cancers, lung 

cancer is the leading cause of death, while breast 

cancer account 5th in rank. Studies have shown that 

lung cancer growth closely associated with prolonged 

exposure to AAP (Hamra et al., 2014; Hamra et al., 

2015). 

2.3. Industrial prospects and market projections 

CRISPR-Cas9 technology has fascinated 

medicinal industries to show the clinical uses of the 

CRISPR-Cas9 system in different fields. Several 

pharmaceutical companies are presently developing 

the CRISPR-Cas9 system market (Mollanoori et al., 

2018), and have revolutionized the therapy of β-

thalassemia, sickle cell disease, Leber congenital 

amaurosis type 10, T-cell mediated immunotherapy in 

cancer and transthyretin amyloidosis. Based on 

CRISPR, pharmaceutical companies have invested, in 

the CAR-T-cell tumour immunotherapy. Bill Gates 

foundation investing for the progress of CRISPR-

Cas9 technology in various fields like livestock, 

health sciences, malaria and crops (Loria et al., 2018).  

Several research foundations have published 

market scenario of CRISPR-Cas9 and other 

technologies to emphasize its importance for the 

development in different fields like livestock, human 

health, cheeses, research tools, agriculture, medical 

and many yet to discover (Araldi et al., 2020; Cui et 

al., 2020; Sioud, 2020; Zhang et al., 2020). In 2017 

CRISPR technology market was $477 million, and its 

estimation by Zion Market Research will get $4.271 

billion until 2024. According to the Indian survey 

report, the world CRISPR market will reach $6.28 

billion in 2022 at a compound yearly growth rate 
(CAGR) of 14.5% (Markets and Markets, 2017). 

Genome editing market is predicted to expand from 

$551.2 million (2017) to $3.087 billion (2023) with 

33.26% CAGR (Zion Market Research, 2018). A 

recent report of the North American market indicated 

the largest share of the CRISPR market due to its 

advancement and early adaptation for the latest 

therapy. Subsequently, Asian and European markets 

were estimated as the second and third-biggest 

markets for gene-editing technology share (Research 

and Markets, 2016). A U.S.-based research projection 

in 2017 proposed that the international market for 

genome editing will spread to $8.1 billion up to 2025 

(Grand View Research, 2017). 

3. Future perspectives  

 Among all gene-editing tools, the CRISPR-Cas9 

technique has brought a revolution in molecular 

biology due to its versatility, advancement, simplicity, 

and effectiveness in genome manipulation. Along 

with the widespread use of CRISPR technologies, the 

most important and effective for therapeutic purposes 

(Dunbar et al., 2018). Social media and other mass 

media channels played a crucial in the publicity of 

these developments in society to create interest in the 

community about gene-editing techniques. Along 

with all these quick advancements and improvements 

in CRISPR-based tools, there are several technical 

challenges associated with ethical and social concern. 

One of these difficulties is the transfer of CRISPR 

techniques into cells and tissues, and scientists use 

virus-based vectors carrying desired gene sequences. 

These virus origin vectors cause immunogenicity in 

living organisms. However, to overcome this problem, 

AAV vectors are used explicitly as in vivo delivery 

vehicles due to their less antigenic nature.  

The main issue is the packaging of Cas9 proteins 

into the AAV vector due to the bulk size of the Cas9 

protein. So it is extremely required to invent a smaller 

Cas9 protein or truncate its unnecessary regions to 

decrease its size. Finally, further advancements in the 

CRISPR Cas9 technique will solve the therapeutic 

challenges in cancer and many other field challenges. 

The conventional techniques are not suitable for rapid, 

efficient, precise, and successful genome editing to 

cure cancer, infectious diseases, inherited disorders, 

homologous recombination, and combat with 

multidrug resistance microbes. I 

The Cas 13 RNA screens were used to establish 

gRNAs for Corona Virus Disease 2019 (COVID-19) 

infection and for the human RNA segments that may 

be used in vaccines and diagnostic or treatments 

(Wessels et al., 2020). 
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4. Conclusion  

Genome editing is a rapidly emerging technology 

with increased efficiency and low-cost treatment for 

cancer and other fatal diseases. This tool is making 

prodigious developments in cancer modelling with 

precise genomic modifications with good therapeutic 

value than other tools. Discovery in cancer treatment 

screens of CRISPR/Cas9 is a useful genomic editing 

tool for new targets. In both cases, in vivo and ex 

vivo applications of sgRNAs and Cas9 may be used 

to discover new insights of cancer-associated genes’ 

function detecting as a loss of function. In future 

CRISPR Cas9 will deliver an entire group of essential 

genes for therapeutic purpose and will revolutionize 

in all fields of life for its novel application at the 

genome editing level. 
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