Remediation of Saline Soils by Application of Biochar, A Review – Abstract

Journal of Environmental and Agricultural Sciences (JEAS). Zaib et al., 2022. 24(3&4):29-36 

Open Access – Review Article

Remediation of Saline Soils by Application of Biochar: A Review

Muhammad Zaib 1, ⃰, Usama Farooq 1, Muhammad Adnan 1, Saleem Sajjad 1, Zaheer Abbas 1, Kamran Haider 1, Noreen Khan 1, Roaid Abbas 1, Awon Shahzeb Nasir 2, Muhammad Furqan Muhay-Ul-Din 3
1 Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan

2 Department of Plant Breeding and Genetics, University College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
3 Department of Agricultural Extension, University College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan

Abstract: Globally, agriculture is the backbone of farmers and plays a crucial role in food security, for a world with increasing population and food demand. As we know that the world’s population is increasing rapidly every year, so the supply of food for the alarmingly increasing world population has become a serious problem. Food insecurity is aggravated by changing climatic conditions, soil degradation, and loss of arable lands due to various abiotic stresses, including salinity. Salinity greatly affects the world’s agricultural lands due to various factors such as low availability of fresh and salt-free water, high temperature, etc. The salinity is caused by both primary and secondary processes. Primary salinity is mainly caused by many natural processes while secondary is mainly caused by human activities. Salinity is a land degradation process, characterized by a high concentration of soluble salts in the soil. It can suppress crop growth by influencing various functions and processes of plants, ultimately leading to significant yield reduction. Biochar is an organic-based material that helps to remediate soil salinity by various mechanisms in the soil system. Biochar has the potential to enrich microbial diversity and enhance activity which plays a vital role in the improvement of soil physical, chemical, and biological activities enhancing the productivity of the crops. The present review contains extensive details about salinity and its remediation using biochar.
Keywords: Abiotic stress, biochar, carbon-rich material, carbon sequestration, food security, microbial activity, plant growth, salinity, soil salinity, sustainable agriculture, water availability to plants.

*Corresponding author: Muhammad Zaib, email:

Cite this article as Zaib, M., U. Farooq, M. Adnan1, S. Sajjad, Z. Abbas, K. Haider, N. Khan, R. Abbas, A.S. Nasir, M.F. Muhay-Ul-Din. 2022. Remediation of Saline Soils by Application of Biochar: A Review. Journal of Environmental & Agricultural Sciences. 24(3&4): 29-36. [Abstract] [View Full-Text] [Citations]

Copyright © Zaib et al., 2022. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium provided the original author and source are appropriately cited and credited.

Similar Articles Published in JEAS

  • Zahalan, R. and M.M. Alzoubi. 2021. Effect of Organic Physical Soil Amending on Deficit Irrigation Efficiency of potato (Solanum Tuberosum L.). Journal of Environmental & Agricultural Sciences. 23(1&2): 11-18. [ View Full-Text ]  [Citations]
  • Nasir, M.W., and Z. Toth. 2021. Effect of drought stress on morphology, yield, and chlorophyll concentration of Hungarian potato genotypes. Journal of Environmental & Agricultural Sciences. 23(3&4): 8-16. [View Full-Text]  [Citations]
  • Nasir, M.W.,  A. Yasmeen, M. Imran and T. Zoltan. 2019. Seed priming to alleviate drought stress in cotton. Journal of Environmental& Agricultural Sciences. 21:14-22.
    [Abstract] [View Full-Text] [Citations]
  • Ahmad, A., Z. Aslam, N. Iqbal, M. Idrees, K. Bellitürk, S.Rehman, H. Ameer,, M.U. Ibrahim, Samiullah and M. Rehan. 2019. Effect of exogenous application of osmolytes on growth and yield of wheat under drought conditions. Journal of Environmental & Agricultural Sciences. 21:6-13. [Abstract] [View Full-Text] 
  • Ahmad, I., S.M.A. Basra, S. Hussain, S.A. Hussain, Hafeez-ur-Rehman, A. Rehman and A. Ali. 2015. Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. Journal of Environmental & Agricultural Sciences. 3:14-22. [ ] [View Full-Text] [Citations]

Aburto, N.J., A. Ziolkovska, L. Hooper, P. Elliott, F.P. Cappuccio and J.J. Meerpohl. 2013. Effect of lower sodium intake on health: systematic review and meta-analyses. British Med. J. 346:1–20.

Akbarimoghaddam, H., M. Galavi, A. Ghanbari and N. Panjehkeh. 2011. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J. Sci. 9(1):43–50.

Akhil, D., D. Lakshmi, A. Kartik, D.-V. N. Vo, J. Arun and K. P. Gopinath. 2021. Production, characterization, activation and environmental applications of engineered biochar: a review. Environ. Chem. Lett. 19: 2261-2297.

Akhtar S.S., M.N. Andersen and F. Liu. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress, Agri. Water Manag. 158: 61-68.

Ali, S., M. Rizwan, M.F. Qayyum, Y.S. Ok, M. Ibrahim, M. Riaz, M.S. Arif, F. Hafeez, M.A. Wabel and A.N Shahzad. 2017. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. 24:12700-12712.

Amini, S., H. Ghadiri, C. Chen and P. Marschner. 2016 Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soils Sediments. 16:939-953.

Arif, Y., P. Singh, H. Siddiqui, A. Bajguz and S. Hayat. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 156: 64-77.

Askari-Khorasgani, O., M. I. A. Rehmani, S. H. Wani and A. Kumar. 2021. Osmotic stress: an outcome of drought and salinity Handbook of Plant and Crop Physiology. pp. 445-464. CRC Press.

Barros, N. L. F., D. N. Marques, L. B. A. Tadaiesky and C. R. B. de Souza. 2021. Halophytes and other molecular strategies for the generation of salt-tolerant crops. Plant Physiol. Biochem. 162: 581-591.

Bekir, S., R. I. Zoghlami, K. Boudabbous, M. N. Khelil, M. Moussa, R. Ghrib, O. Nahdi, E. Trabelsi and H. Bousnina. 2022. Soil Physicochemical Changes as Modulated by Treated Wastewater after Medium-and Long-Term Irrigations: A Case Study from Tunisia. Agriculture. 12: 2139.

Bennetzen, E. H., P. Smith and J. R. Porter. 2016. Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Chang. 37: 43-55.

Bhaduri, D., A. Saha, D. Desai and H.N. Meena. 2016. Restoration of carbon and microbial activity in saltinduced soil by application of peanut shell biochar during short-term incubation study. Chemosphere. 148:86–98.

Bhardwaj, A. K., V. K. Mishra, A. K. Singh, S. Arora, S. Srivastava, Y. P. Singh and D. K. Sharma. 2019. Soil salinity and land use-land cover interactions with soil carbon in a salt-affected irrigation canal command of Indo-Gangetic plain. CATENA. 180: 392-400.

Bogužas, V., L. Skinulienė, L. M. Butkevičienė, V. Steponavičienė, E. Petrauskas and N. Maršalkienė. 2022. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 11, 431.

Bourke, P. M., J. B. Evers, P. Bijma, D. F. van Apeldoorn, M. J. M. Smulders, T. W. Kuyper, L. Mommer and G. Bonnema. 2021. Breeding Beyond Monoculture: Putting the “Intercrop” Into Crops. Front. Plant Sci. 12:734167.

Calicioglu, O., A. Flammini, S. Bracco, L. Bellù and R. Sims. 2019. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability. 11: 222.

Cooper, C. M., J. McCall, S. C. Stokes, C. McKay, M. J. Bentley, J. S. Rosenblum, T. A. Blewett, Z. Huang, A. Miara, M. Talmadge, et al. 2022. Oil and gas produced water reuse: opportunities, treatment needs, and challenges. ACS ES&T Eng. 2: 347-366.

Cunillera-Montcusí, D., M. Beklioğlu, M. Cañedo-Argüelles, E. Jeppesen, R. Ptacnik, C. A. Amorim, S. E. Arnott, S. A. Berger, S. Brucet, H. A. Dugan et al. 2022. Freshwater salinisation: a research agenda for a saltier world. Trend. Ecol. Evol. 37: 440-453.

de Groot, G. S., M. A. Aizen, A. Sáez and C. L. Morales. 2021. Large-scale monoculture reduces honey yield: The case of soybean expansion in Argentina. Agric. Ecosyst. Environ. 306:, 107203.

Echchelh, A., T. Hess and R. Sakrabani. 2018. Reusing oil and gas produced water for irrigation of food crops in drylands. Agric. Water Manag. 206: 124-134.

Eswar, D., R. Karuppusamy and S. Chellamuthu. 2021. Drivers of soil salinity and their correlation with climate change. Curr. Opin. Environ. Sustain. 50: 310-318.

Ezugbe, E. O., E. Kweinor Tetteh, S. Rathilal, D. Asante-Sackey and G. Amo-Duodu. 2021. Desalination of municipal wastewater using forward osmosis. Membranes. 11: 119.

Falcon, W. P., R. L. Naylor and N. D. Shankar. 2022. Rethinking Global Food Demand for 2050. Popul. Devel. Rev. 48: 921-957.

FAO. 2022. Land use statistics and indicators. Global, regional and country trends, 2000–2020. FAOSTAT Analytical Brief, no. 48. Rome.

Glaser, B. and V.-I. Lehr. 2019. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 9: 9338.

Glatzle, A., L. Reimer, J. Núñez-Cobo, A. Smeenk, K. Musálem and R. Laino. 2020. Groundwater dynamics, land cover and salinization in the dry Chaco in Paraguay. Ecohydrol. Hydrobiol. 20: 175-182.

Gonçalo Filho, F., N. da Silva Dias, S. R. P. Suddarth, J. F. S. Ferreira, R. G. Anderson, C. dos Santos Fernandes, R. B. de Lira, M. F. Neto and C. R. Cosme. 2020. Reclaiming tropical saline-sodic soils with gypsum and cow manure. Water. 12: 57.

Gross, A., T. Bromm and B. Glaser. 2021. Soil organic carbon sequestration after biochar application: A Global Meta-analysis. Agronomy. 11: 2474.

Grossiord, C., T. N. Buckley, L. A. Cernusak, K. A. Novick, B. Poulter, R. T. W. Siegwolf, J. S. Sperry and N. G. McDowell. 2020. Plant responses to rising vapor pressure deficit. New Phytol. 226: 1550-1566.

Guo, X., H. Liu, and J. Zhang. 2020. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 102: 884–899.

Haider, F. U., A. L. Virk, M. I. A. Rehmani, M. Skalicky, S. T. Ata-ul-Karim, N. Ahmad, W. Soufan, M. Brestic, A. E. L. Sabagh and C. Liqun. 2022. Integrated Application of Thiourea and Biochar Improves Maize Growth, Antioxidant Activity and Reduces Cadmium Bioavailability in Cadmium-Contaminated Soil. Front. Plant Sci. 12: 809322.

Hammer, E. C., M. Forstreuter, M. C. Rillig and J. Kohler. 2015. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl. Soil Ecol. 96: 114-121.

Hassani, A., A. Azapagic and N. Shokri. 2020. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl. Acad. Sci. U.S.A. 117: 33017-33027.

Heiss, J. W., B. Mase and C. Shen. 2022. Effects of future increases in tidal flooding on salinity and groundwater dynamics in coastal aquifers. Water Resour. Res. 58: e2022WR033195.

Hintz, W. D., S. E. Arnott, C. C. Symons, D. A. Greco, A. McClymont, J. A. Brentrup, M. Cañedo-Argüelles, A. M. Derry, A. L. Downing, D. K. Gray. 2022. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl. Acad. Sci. U.S.A. 119: e2115033119.

Hong, C., J. A. Burney, J. Pongratz, J. E. M. S. Nabel, N. D. Mueller, R. B. Jackson and S. J. Davis. 2021. Global and regional drivers of land-use emissions in 1961–2017. Nature. 589: 554-561.

Hopmans, J. W., A. S. Qureshi, I. Kisekka, R. Munns, S. R. Grattan, P. Rengasamy, A. Ben-Gal, S. Assouline, M. Javaux, P. S. Minhas et al. 2021. Chapter One – Critical knowledge gaps and research priorities in global soil salinity. In: D. L. Sparks ed. Advances in Agronomy. p. 1-191. Academic Press.

Huang, Y., X. Lee, M. Grattieri, M. Yuan, R. Cai, F.C. Macazo and S.D. Minteer. 2020. Modifid biochar for phosphate adsorption in environmentally relevant conditisons. Chem. Eng. J. 380:122375.

Isayenkov, S. V. 2019. Genetic sources for the development of salt tolerance in crops. Plant Growth Regul. 89: 1-17.

Jensen, L., J. Schjoerring and K. van der Hoek. 2011. Benefits of nitrogen for food fibre and industrial production. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, Grinsven Hv, Grizzetti B editors 2011. The European nitrogen assessment: sources, effects and policy perspectives 2011 Cambridge, UK: Cambridge University Press. 32–61.

Karim, A. A., M. Kumar, E. Singh, A. Kumar, S. Kumar, A. Ray and N. K. Dhal, 2022: Enrichment of primary macronutrients in biochar for sustainable agriculture: A review. Crit. Rev. Environ. Sci. Technol. 52: 1449-1490.

Kaushal, S. S., G. E. Likens, M. L. Pace, J. E. Reimer, C. M. Maas, J. G. Galella, R. M. Utz, S. Duan, J. R. Kryger, A. M. Yaculak et al. 2021. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry. 154: 255-292.

Khadem, A., F. Raiesi, H. Besharati and M. A. Khalaj. 2021. The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar 3, 105-116.

Khan, K., M. Ali, M. Naveed, M. Rehmani, M. Shafique, H. Ali, N. Abdelsalam, R. Ghareeb and G. Feng, 2022: Co-application of organic amendments and inorganic P increase maize growth and soil carbon, phosphorus availability in calcareous soil. Front. Environ. Sci. , 10:949371.

Kim, H.S., K.R. Kim, J.E. Yang, Y.S. Ok, G. Owens, T. Nehls, G. Wessolek and K.H. Kim 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere. 142:153–159.

Kumar, A. and J.P Verma. 2018. Does plant-microbe interaction confer stress tolerance in plants: A review? Microbiol Res. 207:41–52.

Lashari, M.S., Y. Liu, L. Li, W. Pan, J. Fu, G. Pan and X. Yu. 2013. Effects of amendment of biochar manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a saltstressed cropland from Central China Great Plain. Field Crop Res. 144:113–118.

Lashari, M.S., Y. Ye, H. Ji, L. Li, G.W. Kibue, H. Lu, J. Zheng and G. Pan. 2015. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J. Sci. Food Agric. 95: 1321–1327.

Lassiter, A. 2021. Rising seas, changing salt lines, and drinking water salinization. Curr. Opin. Environ. Sustain. 50: 208-214.

Lehman, J., M.C. Rilling, J.E. Thies, C.A. Masiello, W.C. Hockaday and D. Crowley. 2011. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43:1812–1836.

Liang, X., X. Wang, N. Zhang and B. Li. 2022. Biogeographical patterns and assembly of bacterial communities in saline soils of Northeast China. Microorganisms. 10: 1787.

Lin, X.W., Z.B. Xie, J.Y. Zheng, Q. Liu, Q.C. Bei and J.G. Zhu. 2015. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Eur. J. Soil Sci. 66: 329–338.

Liu, S., J. Meng, L. Jiang, X. Yang, Y. Lan, X. Cheng and W. Chen. 2017. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl. Soil Ecol. 116: 12–22.

Llamas, D.P., M.D. Gonzales, C.I. Gonzales, G.R. Lopez and J.C. Marquina 2008. Effects of water potential on spore germination and viability of Fusarium species. J. Indust. Microbiol. Biotechnol. 35(11):1411-1418.

Luo, X., G. Liu, Y. Xia, L. Chen, Z. Jiang, H. Zheng and Z. Wang. 2017. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments. 17(3): 780-789.

Maathuis, F.J., I. Ahmad and J. Patishtan. 2014. Regulation of Na+ fluxes in plants. Front Plant Sci. 5:467.

Maertens, M., G. J. M. De Lannoy, F. Vincent, S. Massart, R. Giménez, J. Houspanossian, I. Gasparri and V. Vanacker. 2022. Spatial patterns of soil salinity in the central Argentinean Dry Chaco. Anthropocene. 37: 100322.

Mahmood, M. Z., S. Bibi, M. Shahzad, A. Fakhar, M. Rafique and A. Qayyum. 2021. Mechanisms of microbes to combat salinity in soil by producing secondary metabolites. Arabian J. Geosci. 15: 45.

Mahmoud, E., T. El-Beshbeshy, N.A. El-Kader, R.E. Shal and N. Khalafallah. 2019 Impacts of biochar application on soil fertility, plant nutrients uptake and maize (Zea mays L.) yield in saline sodic soil. Arab J. Geosci. 12(23):1–9.

Mamilov, A.S. and O.A. Dilly. 2002. Soil microbial eco-physiology as affected by shortterm variations in environmental conditions. Soil Biol. Biochem. 34:1283-1290.

Mandeel, Q.A. 2006. Biodiversity of the genus Fusarium in saline soil habitats. J. Basic Microbiol. 46(6):480-494.

Martí, E., J. Sierra, X. Domene, M. Mumbrú, R. Cruañas and M. A. Garau. 2021. One-year monitoring of nitrogen forms after the application of various types of biochar on different soils. Geoderma. 402: 115178.

Meng, X., J. Zhou and N. Sui. 2018. Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sci. 13:149–154.

Mohan, D., A. Sarswat, Y.S. Ok and C.U Pittman. 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol. 160:191–202.

Mohanavelu, A., S. R. Naganna and N. Al-Ansari. 2021. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture. 11: 983.

Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment. 25:239-250.

Murtaza, G., Z. Ahmed, M. Usman, W. Tariq, Z. Ullah, M. Shareef, H. Iqbal, M. Waqas, A. Tariq, Y. Wu, Z. Zhang and A. Ditta. 2021. Biochar induced modifications in soil properties and its impacts on crop growth and production. J. Plant Nutrit. 44: 1677-1691.

Nath, H., B. Sarkar, S. Mitra and S. Bhaladhare. 2022. Biochar from biomass: A review on biochar preparation its modification and impact on soil including soil microbiology. Geomicrobiol. J. 39: 373-388.

Naz, T., M.M. Iqbal, M. Tahir, M. M. Hassan, M. I. A. Rehmani, M. I. Zafar, U. Ghafoor, M. A. Qazi, A. EL Sabagh and M. I. Sakran. 2021. Foliar application of potassium mitigates salinity stress conditions in spinach (Spinacia oleracea L.) through reducing NaCl toxicity and enhancing the activity of antioxidant enzymes. Horticulturae. 7: 566.

Negacz, K., Ž. Malek, A. de Vos and P. Vellinga. 2022. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J. Arid Environ. 203: 104775.

Niazi, N.K., B. Murtaza, I. Bibi, M. Shahid, J.C. White, M.F. Nawaz, S. Bashir, M.B. Sakoor, G. Choppala, G. Murtaza and H. Wang. 2016. Removal and Recovery of Metals by Biosorbents and Biochars Derived from Biowastes. Environmental Materials and Waste, Elsevier. p.149–177.

O’Connor, G.A., H.A. Elliott and P.K. Bastian. 2008. Degraded water reuse: An overview. J. Environ. Qual. 37(5):157–168.

Okur, B. and N. Örçen. 2020. Chapter 12 – Soil salinization and climate change. In: M. N. V. Prasad and M. Pietrzykowski eds. Climate Change and Soil Interactions. Elsevier, p. 331-350.

Olson, S., M. F. Jansen, D. S. Abbot, I. Halevy and C. Goldblatt. 2022. The Effect of Ocean Salinity on Climate and Its Implications for Earth’s Habitability. Geophys. Res. Lett. 49: e2021GL095748.

Ondrasek, G. and Z. Rengel. 2021. Environmental salinization processes: Detection, implications & solutions. Sci. Total Environ. 754: 142432.

Palansooriya, K. N., J. T. F. Wong, Y. Hashimoto, L. Huang, J. Rinklebe, S. X. Chang, N. Bolan, H. Wang and Y. S. Ok. 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar 1: 3-22.

Panchasara, H., N. H. Samrat and N. Islam. 2021. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture. 11: 85.

Parthasarathy, P., T. Al-Ansari, H. R. Mackey, K. Sheeba Narayanan and G. McKay. 2022. A review on prominent animal and municipal wastes as potential feedstocks for solar pyrolysis for biochar production. Fuel. 316: 123378.

Penn, C. J. and J. J. Camberato, 2019. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agriculture 9: 120.

Prăvălie, R. 2021. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 220: 103689.

Premarathna, K.S.D., A.U., Rajapaksha, Sarkar B, E.E., Kwon, A., Bhatnagar, Y.S., Ok and M., Vithanage 2019. Biochar-based engineered composites for sorptive decontamination of water: a review. Chem. Eng. J. 372: 536–550

Qiu, B., X. Tao, H. Wang, W. Li, X. Ding and H. Chu. 2021. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis. 155: 105081.

Quilty, J.R. and S.R. Cattle. 2011. Use and understanding of organic amendments in Australian agriculture: a review. Soil Res. 49:1–26.

Rahman, A.K.M.M., K.M. Ahmed, A.P. Butler and M.A. Hoque. 2018. Influence of surface geology and micro-scale land use on the shallow subsurface salinity in deltaic coastal areas: a case from southwest Bangladesh. Environ. Earth. Sci. 77:423.

Rahman, G. K. M. M., M. M. Rahman, M. S. Alam, M. Z. Kamal, H. A. Mashuk, R. Datta and R. S. Meena. 2020. Biochar and Organic Amendments for Sustainable Soil Carbon and Soil Health. In: R. Datta, R. S. Meena, S. I. Pathan and M. T. Ceccherini eds. Carbon and Nitrogen Cycling in Soil. Springer Singapore, Singapore, p. 45-85.

Rajkovich, S., A. Enders, K. Hanley, C. Hyland, A.R. Zimmerman and J. Lehmann. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils. 48:271-284.

Rasheed, S., S. Jahan, T. Sharmin, S. Hoque, M.A. Khanam, M.A. Land and A. Bhuiya. 2014. How much salt do adults consume in climate vulnerable coastal Bangladesh? BMC Public Health. 14(1):1– 7.

Rengasamy, P. 2016. Soil chemistry factors confounding crop salinity tolerance—A review. Agronomy. 6: 53.

Rezaei, N. and F. Razzaghi. 2018. Effect of different levels of water salinity and biochar on wheat yield under greenhouse conditions. Acta. Horticulturae. 1190:83-88.

Richards, L. A. 1954. Diagnosis and improvement of saline and alkali soils. Handbook No. 60. US Department of Agriculture.

Rizwan, M., S. Ali, M.F. Qayyum, M. Ibrahim, M.Z. Rehman, T. Abbas and Y.S. Ok. 2016. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res. 23:2230–2248.

Ros, M. B. H., G. F. Koopmans, K. J. van Groenigen, D. Abalos, O. Oenema, H. M. J. Vos and J. W. van Groenigen. 2020. Towards optimal use of phosphorus fertiliser. Sci. Rep. 10, 17804.

Roy, S. and N. Chowdhury. 2020. Salt Stress in Plants and Amelioration Strategies: A Critical Review. In: F. Shah, S. Shah, C. Yajun, W. Chao and W. Depeng eds. Abiotic Stress in Plants. Ch. 19. IntechOpen, Rijeka.

Sabino, M., E. Schefuß, M. Natalicchio, F. Dela Pierre, D. Birgel, D. Bortels, B. Schnetger and J. Peckmann. 2020. Climatic and hydrologic variability in the northern Mediterranean across the onset of the Messinian salinity crisis. Palaeogeograph. Palaeoclimatol. Palaeoecol. 545: 109632.

Sadegh‐Zadeh F., M. Parichehreh, B. Jalili and M.A. Bahmanyar. 2018. Rehabilitation of calcareous saline‐sodic soil by means of biochars and acidified biochars, Land Degradation and Development. 29(10): 3262-3271.

Saifullah, S.D., A. Naeem, Z. Rengel and R. Naidu. 2018. Biochar application for the remediation of salt affected soils: Challenges and opportunities. Sci. Total Environ. 625:320-335.

Sakhiya, A. K., A. Anand, I. Aier, V. K. Vijay and P. Kaushal. 2021. Suitability of rice straw for biochar production through slow pyrolysis: Product characterization and thermodynamic analysis. Biores. Technol. Report. 15: 100818.

Sarfraz, R., A. Hussain, A. Sabir, I. Ben Fekih, A. Ditta and S. Xing. 2019. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—a review. Environ. Monitor. Assessm. 191:, 251.

Schuler, M. S., M. Canedo-Argüelles, W. D. Hintz, B. Dyack, S. Birk and R. A. Relyea. 2019. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. Royal Soc. B. 374: 20180019.

Shakoor M.B., Z.L. Ye, S. Chen. 2021. Engineered biochars for recovering phosphate and ammonium from wastewater: a review. Sci. Total. Environ. 779: 146240.

Sigua, G. C., J. M. Novak, D. W. Watts, K. B. Cantrell, P. D. Shumaker, A. A. Szögi and M. G. Johnson. 2014. Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere.103: 313-321.

Singh, A., 2022. Soil salinity: A global threat to sustainable development. Soil Use Manag. 38: 39-67.

Singh, J. S. and V. K. Gupta. 2018. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Sci. Total Environ. 634: 497-500.

Singh, R, A. Prakash, B. Balagurumurthy, R. Singh, S. Saran and T. Bhaskar. 2015. Hydrothermal liquefaction of agricultural and forest biomass residue: comparative study. J. Mater Cycles Waste Manag. 17: 442–452.

Sun, H., H. Lu, L. Chu, H. Shao and W. Shi. 2017. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 575: 820–825.

Tabari, H. 2021. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 593: 125932.

Tanu, F. Z. 2022. Imbalanced nutrient accumulation in the coastal soils induced by salinity intrusion. Polish J. Soil Sci. 55: 37-49.

Thomas S.C., S. Frye, N. Gale, M. Garmon, R. Launchbury, N. Machado, S. Melamed, J. Murray, A. Petroff and C. Winsborough. 2013. Biochar mitigates negative effects of salt additions on two herbaceous plant species, J. Environ. Manage. 129: 62-68.

Tripathi, S., S. Kumari, A. Chakraborty, A. Gupta, K. Chakrabarti and B.K. Bandyapadhyay. 2006. Microbial biomass and its activities in salt-affected coastal soils. Biol. Fert. Soils. 42:273–277.

Tubiello, F. N., K. Karl, A. Flammini, J. Gütschow, G. Obli-Laryea​​​​​​​, G. Conchedda, X. Pan, S. Y. Qi, H. Halldórudóttir Heiðarsdóttir, et al. 2022. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data. 14: 1795-1809.

Wicke, B., E. Smeets, V. Dornburg, B. Vashev, T. Gaiser, W. Turkenburg and A. Faaij. 2011. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 4:2669-2681.

Winkler, K., R. Fuchs, M. Rounsevell and M. Herold. 2021. Global land use changes are four times greater than previously estimated. Nat. Commun. 12: 2501.

Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehman and S. Joseph. 2010. Sustainable biochar on mitigate global climate change. Nat. Commun. 1:56.

World Health Organization. 2015. Cardiovascular Diseases. Available from:

Wu, S., H. He, X. Inthapanya, C. Yang, L. Lu, G. Zeng and Z. Han. 2017. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. Environ. Sci. Pollut. Res. 24(20):16560–16577.

Xu, H., A. Cai, D. Wu, G. Liang, J. Xiao, M. Xu, G. Colinet and W. Zhang. 2021. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis. Soil Till. Res. 213: 105125.

Yan, N. and P. Marschner. 2013. Microbial activity and biomass recover rapidly after leaching of saline soils. Biol. Fertil. Soils. 49:367-371.

Yan, N., P. Marschner, W. Cao, C. Zuo and W. Qin. 2015. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 3: 316-323.

Yang, D., Y. Yang and J. Xia. 2021. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2: 115-122.

Yasir, T. A., A. Khan, M. Skalicky, A. Wasaya, M. I. A. Rehmani, N. Sarwar, K. Mubeen, M. Aziz, M. M. Hassan, F. A. S. Hassan et al., 2021. Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and biochemical properties. Molecules. 26: 2576.

Yin, X., Q. Feng, Y. Li, R. C. Deo, W. Liu, M. Zhu, X. Zheng and R. Liu. 2022. An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems. Sci. Total Environ. 806: 150599.

Yue, Y., W.N. Guo, Q.M. Lin, G.T. Li and X.R. Zhao. 2016. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. J. Soil Water Conserv. 71:467-475

Zhang, Q., B.J. Liu, Y.U. Lu, R.R. Wang and F.M. Li. 2019. Effects of biochar amendment on carbon and nitrogen cycling in coastal saline soils: a review. J Nat. Resourc. 34(12):2529–2543.

Zhao, Y., X. Zhuang, S. Ahmad, S. Sung and S.-Q. Ni. 2020. Biotreatment of high-salinity wastewater: current methods and future directions. World J. Microbiol. Biotechnol. 36: 37.

Zheng, X., W. Xu, J. Dong, T. Yang, Z. Shangguan, J. Qu, X. Li and X. Tan. 2022. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. J. Hazard. Mater. 438: 129557.

Zou, Q., W.H. An, C. Wu, W. Li, A. Fu and S. Xue. 2017. Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition. Environ. Chem. Lett. 16: 615–622.

[Recently Published Articles] [Highly Cited Articles] [JEAS Google Scholar] [Follow JEAS on Facebook]

Call for Articles
Submit Your research for publication in the “Journal of Environmental and Agricultural Sciences (JEAS)


Leave a Reply

Your email address will not be published. Required fields are marked *